ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:69.76KB ,
资源ID:3011221      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3011221.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上22一元二次方程的解法教案新版湘教版.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上22一元二次方程的解法教案新版湘教版.docx

1、 22一元二次方程的解法 22.1配方法 教学目标 【知识与技能】 1知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程 2学会用直接开平方法解形如(axb)2k0(k0)的方程 3理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一 步体会化归的思想方法 【过程与方 法】 通过探索配方法的过程,让学生体会转化的数学思想方法 【情感态度】 学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣 【教学重点】 运用配方法解一元二次方程 【教学难点】 把一元二次方程转化为形如(xn)2d(d0)的过程 教学过程 一、情景导入

2、,初步认知 1根据完全平方公式填空: (1)x26x9()2 (2)x28x16()2 (3)x210x()2()2 (4)x23x()2()2 2前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗? 3你会解方程x26x160吗?你会将它变成(xm)2n(n为非负数)的形式吗?试试看如果是方程2x213x呢? 【教学说明】学会利用完全平方知识填空,初步配方为后面学习打下基础 二、思考探究,获取新知 1解方程:x225000. 问:怎样将这个方程“降次”为

3、一元一次方程? 把方程写成x22500 这表明x是2500的平方根,根据平方根的意义,得 x2500或x2500 因此,原方程的解为x150,x250 【归纳结论】一元二次方程的解也是一元二次方程的根 2解方程(2x1)22 解:根据平方根的意义,得 2x12或2x12 因此,原方程的根为 x1212,x2212 3通过上面的两个例题,你知道什么时候用开平方的方法来解一元二次方程呢? 【归纳结论】对于形如(xn)2d(d0)的方程,可直接用开平方法解 直接开平方法的步骤是:把方程变形成(xn)2d(d0),然后直接开平方得xn和xn,分别解这两个一元一次方程,得到的解就是原一元二次方程的解 4

4、解方程x24x12 我们已知,如果把方程x24x12写成(xn)2 d的形式,那么就可以根据平方根的意义来求解 那么,如何将左边写成(xn)2的形式呢? 我们学过完全平方式,你能否将左边x24x添上一项使它成为一个完全平方式请相互交流 写出解题过程 【归纳结论】一般地,像上面这样,在方程x24x12的左边加上一次项系数的一半的平方,在减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方配方、整理后就可以直接根据平方根的意义来求解了这种解一元二次方程的方法叫作配方法 5如何用配方法解方程25x250x110呢? 如果二次项系数为1,那就好办了!那么怎样将二次项的系数化为1呢?同伴之间

5、可以相互交流 试着写出解题过程 6通过上面配方法解一元二次方程的过程,你能总结用配方法解一元二次方程的步骤吗? 【归纳结论】用配方法解一元二次方程的步骤: (1)把方程化为一般形式ax2bxc0; (2)把方程的常数项通过移项移到方程的右边; (3)若方程的二次项系数不为1时,方程两边同时除以二次项系数a; (4)方程两边同时加上一次项系数一半的平方; (5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来 解 【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能用配方法转化为可以直接开平方的形式,所以总结

6、出解一元二次方程的基本思路是将一元二次方程转化为(xn)2d(d0)的形式 三、运用新知,深化理 解 1见教材P33例3、P34例4. 2列方程(注:学生练习,教师巡视,适当辅导) (1)x210x240; (2)(2x1)(x3)5; (3)3x26x40. 解:(1)移项,得x210x24 配方,得x210x252425, 由此可得(x5)21, x51, x16,x24. (2)整理,得2x25x80. 移项,得2x25x8 二次项系数化为1得x252x4, 配方,得x252x(54)24(54)2 (x54)28916, 由此可得x54894, x15894,x25894. (3)移项

7、,得3x26x4 二次项系数化为1,得x22x43, 配方,得x22x124312, (x1)213 因为实数的平方不会是负数,所以x取任何实数时,(x1)2都是非负数,上式都不成立,即原方程无实数根 3解方程x28x10 分析:显然这个方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式 解:x28x10 移项得:x28x1 配方得:x28x16116 即(x4)215 两边开平方得:x415 x1415,x2415. 4用配方法将下列各式化为a(xh)2k的形式 (1)3x26x1;(2)23y213y2; (3)0.4x20.8x1. 解:(1)3x26x1 3(x22x13

8、) 3(x22x121213) 3(x1)243 3(x1)24 (2)23y213y2 23(y212y3) 23 y212y(14)2(14)23 23(y14)24916 23(y14)24924. (3)0.4x20.8x1 0.4(x22x2.5) 0.4(x22x12)122.5 0.4(x1)21.4 【教学说明】通过练习,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的认识 四、师生互动、课堂小结 先小组内交流收获和感想,而后以小组为单位派代表进行总结教师作以补充 课后作业 布置作业:教材“习题2.2”中第1、2、3题 教学反思 在教学过程中,坚持由简单到复杂,由特殊到

9、一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究发现结论,教师 做学生学习的引导者,合作者,促进者,要适时鼓励学生,实现师生互动同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习22.2公式法 教学目标 【知识与技能】 1经历推导求根公式的过程,加强推理技能的训练 2会用公式法解简单系数的一元二次方程 【过程与方法】 通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想 【情感态度】 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公

10、式的对称美、简洁美,产生热爱数学的情感 【教学重点】 求根公式的推导和公式法的应用 【教学难点】 理解求根公式的推导过程 教学过程 一、情景导入,初步认知 1用配方法解方程: (1)x23x20;(2)2x23x50. 2由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2bxc0(a0)使用这些步骤,然后求出解x的公式? 【教学说明】这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果 二、思考探究,获取新知 1用配方法解方程:ax2bxc0(a0) 分析:前面具体

11、数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去 解:移项,得:ax2bxc 因为a0,所以方程两边同除以a得: x2baxca 配方,得:x2bax(b2a)2ca(b2a)2 即(xb2a)2b24ac4a2 a0,4a20 当b24ac0,b24ac4a20 xb2ab24ac2a 即xbb24ac2a x1bb24ac2a, x2bb24ac2a. 当b24ac0 xbb24ac2a72522754 即x13,x212. 2某数学兴趣小组对关于x的方程(m1)xm21(m2)x10提出了下列问题 (1)若使方程为一元二次方程,m是否存在?若

12、存在,求出m并解此方程 (2)若使方程为一元一次方程m是否存在?若存在,请求出 你能解决这个问题吗? 分析:(1)要使它为一元二次方程,必须满足m212,同时还要满足(m1)0. (2)要使它为一元一次方程,必须满足 m211(m1)(m2)0或m210m20或 m10m20 解:(1)存在根据题意,得:m212 m21m1 当m1时,m11120 当m1时,m1110(不合题意,舍去) 当m1时,方程为2x21x0 a2,b1,c1 b24ac(1)242(1)189 x(1)922134 x11,x212. 因此,该方程是一元二次方程时,m1,两根x11,x212. (2)存在根据题意,得

13、:m211,m20,m0 因为当m0时,(m1)(m2)2m110 所以m0满足题意 当m210,m不存在 当m10,即m1时,m230 所以m1也满足题意 当m0时,一元一次方程是x2x 10, 解得:x1 当m1时,一元一次方程是3x10 解得x13 因此,当m0或1时,该方程是一元一次方程,并且当m0时,其根为x1;当m1时,其一元一次方程的根为x13.【教学说明】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式 四、师生互动、课堂小结 先小组内交流收获和感想而后以小组为单位派代表进行总结教师作以补充 课后作业 布置作业:教材“习题2.2”中第4题 教学反思 通过复习

14、配方法使学生会对一元二次方程的定义及解法有一个熟悉的印象然后让学生用配方法推导一般形式ax2bxc0(a0)的解,并掌握利用根的判别式判断一元二次方程根的情况使学生的推理能力得到加强22.3因式分解法 教学目标 【知识与技能】 能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程能够根据一元二次方程的结构特点,灵活择其简单的方法 【过程与方法】 通过比较、分析、综合,培养学生分析问题解决问题的能力 【情感态度】 通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法 【教学重点】 用因式分解法解一元二次方程 【教学难点】 理解因式分解法解一元二次方

15、程的基本思想 教学过程 一、情景导入,初步认知 复习:将下列各式分解因式 (1)5x24x (2)x24x4 (3)4x(x1)22x (4)x24 (5)(2x1)2x2 【教学说明】通过复习相关知识,有利于学生熟练正确将多项式因式分解,从而有利降低本节的难度 二、思考探究,获取新知 1解方程x23x0 可用因式分解法求解 方程左边提取公因式x,得x(x3)0 由此得x0或x30 即x10,x23 与公式法相比,哪种更简单? 【归纳结论】利用因式分解来解一元二次方程的方法叫做因式分解法 2用因式分解法解下列方程; (1)x(x5)3x; (2)2x(5x1)3(5x1); (3)(352x)

16、29000. 3你能总结因式分解法解一元二次方程的一般步骤吗? 【归纳结论】把方程化成一边为0,另一边是两个一次因式的乘积的形式,然后使每一个一次因式等于0,分别解 两个一元一次方程,得到的两个解就是原一元二次方程的解 4说一说 :因式分解法适用于解什么形式的一元二次方程 【归纳结论】因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程 5选择合适的方法解下列方程: (1)x23x0; (2)5x24x30; (3)x22x30. 按课本方式引导学生用因式分解法解一元二次方程 6如何选择合适的方法解一元二次方程呢? 【归纳结论】公式法适用于所有一元二次方程因式分解法(有时需

17、要先配方)适用于所有一元二次方程配方法是为了推导出求根公式,以及先配方,然后用因式分解法 总之,解一元二次方程的基本思路都是:将一元二次方程转化成为一元一次方程,即降次,其本质是把方程ax2bxc0(a0)的左边的二次多项式分解成两个一次多项式的乘积,即ax2bxca(xx1)(xx2),其中x1和x2是方程ax2bxc0的两个根 【教学说明】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据 三、运用新知,深化理解 1用因式分解法解下列方程: (1)5x23x0; (2)7x(3x)4(x3) 分析:(1)左边x(5x3),右边0;(2)先把右

18、边化为0,7x(3x)4(x3)0,找出(3x )与(x3)的关系 解:(1)因式分解,得x(5x3)0, 于是得x0或5x30, x10,x235; (2)原方程化为7x(3x)4(x3)0, 因式分解,得(x3)(7x4)0, 于是得x30或7x40, x13,x247 2选择合适的方法解下列方程: (1)2x25x20; (2)(1x)(x4)(x1)(12x) 分析:(1)题宜用公式法;(2)题中找到(1x)与(x1)的关系用因式分解法; 解:(1)a2,b5,c2, b24ac(5)242290, x5922534, x12,x212 (2)原方程化为(1x)(x4)(1x)(12x

19、)0, 因式分解,得(1x)(5x)0, 即(x1)(x5)0, x10或x50, x11,x25 3用因式分解法解下列方程: (1)10x23x0; (2)7x(3x)6(x3); (3)9(x2)24(x1)2. 分析:(1)左边x(10x3),右边0;(2)先把右边化为0,7x(3x)6(x3)0,找出(3x)与(x3)的关系;(3)应用平方差公式 解:(1)因式分解,得x(10x3)0, 于是得x0或10x30, x10,x2310; (2)原方程化为7x(3x)6(x3)0, 因式分解,得(x3)(7x6)0, 于是得x30或7x60, x13,x2 67; (3)原方程化为9(x2

20、)24(x1)20, 因式分解,得 3(x2)2(x1)3(x2)2(x1)0, 即(5x4)(x8)0, 于是得5x40或x80, x145,x28. 4已知(a2b2)2(a2b2)60,求a2b2的值 分析:若把(a2b2)看作一个整体,则已知条件可以看作是以(a2b2)为未知数的一元二次方程 解:设a2b2x,则原方程化为x2x60. a1,b1,c6,b24ac124(6)1250, x1252,x13,x22. 即a2b23或a2b22, a2b 20,a2b22不合题意应舍去,取a2b23. 四、师生互动、课堂小结 先小组内交流收获和感想,而后以小组为单位派代表进行总结教师作以补充 课后作业 布置作业:教材“练习题2.2”中第5、6、9、10题 教学反思 这节课主要学习了用因式分解法解一元二次方程的概念及其解法,解法的基本思路是将一元二次方程转化为一元一次方程,而达到这一目的,我们主要利用了因式分解“降次”在今天的学习中,要逐步深入、领会、掌握“转化”这一数学思想方法20 20

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服