ImageVerifierCode 换一换
格式:DOC , 页数:36 ,大小:371KB ,
资源ID:3010498      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3010498.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(汽车专业毕业设计-翻译-中英文(全)lean-remanufacture-of-an-automobile-clutch.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

汽车专业毕业设计-翻译-中英文(全)lean-remanufacture-of-an-automobile-clutch.doc

1、LEAN REMANUFACTURE OF AN AUTOMOBILE CLUTCHTony Amezquita* Assistant Professor, corresponding author.andBert Bras* Remanufacturing Engineer. Saturn CorporationSystems Realization LaboratorySpring Hill, TennesseeWoodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta, Georgia 3

2、0332-0405AbstractIn the history of manufacturing there have been three production systems, namely, craft production, mass production, and lean production. In many automotive remanufacturing operations, craft production and mass production systems are used as the basis for remanufacturing processes.

3、The lean production system has proven to be more effective in the manufacture of automotive parts and it has allowed manufacturers who use it to produce in much greater varieties, with higher quality levels, and with lower costs. Hence, if used in remanufacturing, it would greatly enhance it. In thi

4、s paper, a current remanufacturing process of an automobile clutch is analyzed, and a lean remanufacturing process is developed and compared to the as is process. Our findings indicate that the lean remanufacturing process provides a more robust process with lower costs when compared with the curren

5、t clutch remanufacturing process that utilize craft and mass production practices.1Our Frame of Reference Remanufacture in the Automotive IndustryRemanufacturing is the most economically sustainable form of reuse and recycling of manufactured goods, and it can be defined as the industrial process wh

6、ere worn out products referred to as cores, are brought back to original specifications and condition. In some cases, especially in the remanufacture of OEM automotive parts, remanufactured products exceed original specifications. The reason is that the latest engineering design and specifications,

7、coupled with failure mode countermeasures derived from failure analysis, are used instead of the original specifications. The benefits of remanufacturing are many, but the most salient are:1)Remanufacturing salvages the material, energy, capital, labor, and emissions that went into the manufacture a

8、nd material processing of products. 2) The resulting production costs can often be lower than manufacturing, allowing remanufacturers to sell their units for 25 to 50% less than manufactured units with equivalent or better quality levels.These two benefits are the result of the fact that parts are r

9、eused and the embedded utility in the parts are maintained. Hence the resulting production costs, which should be considerably less than in manufacturing, allow remanufacturers to pass the savings on to consumers. Remanufacturing in the automotive industry can be divided into two groups; independent

10、 remanufacturers and Original Equipment Manufacturer (OEM) remanufacturers. Both of these activities in the domain of automotive products constitute the largest remanufacturing consumer market segment in the United States and Europe. In 1978, Kutta and Lund documented a survey capturing some of the

11、issues important to remanufacturers (Kutta and Lund, 1978). However, we discovered in surveys and interviews with remanufacturers that many changes have occurred in the industry since then (Hammond, et al., 1996, Hammond, 1996). Major changes have been the restructuring of automotive companies into

12、platforms and the trend towards mass customization of products. Especially the latter has resulted in what remanufacturers have termed “Parts Proliferation”, which refers to the practice of making many variations of the same product - differing only in one or two minor areas. However, these differen

13、ces (such as electrical connectors) are distinct enough to prevent interchanging these similar products. The focus in this paper is on independent automotive remanufacturers, because they remanufacture component parts from most of the automobile manufacturers in the world, and for a very large numbe

14、r of model years. This being the case, independent remanufacturers are faced with a parts proliferation problem which cannot be successfully handled with their current production practices, that consist of a mixture of mass production and craft production practices. As described below craft producti

15、on practices maintain production costs high regardless of volume, and mass production practices are not compatible with large product varieties. Consequently independent parts remanufacturers are loosing market share to aftermarket parts manufacturers, and in some cases, remanufacturers are being fo

16、rced out of the market, as in the case of clutch remanufacturing. For example, in 1989 the price difference between remanufactured and manufactured clutches was 50%. In 1994 the difference dropped to 20%, and now a large number of clutch remanufacturers are getting out of clutch remanufacturing alto

17、gether. It is our belief that the trends in mass customization and parts proliferation will not decrease and the small to medium sized independent remanufacturers seem to suffer most from these trends. Our surveys also point out the differences and sometimes hard “us versus them” attitude between in

18、dependent remanufacturers and Original Equipment Manufacturers (OEMs), leading us to believe that the sharing of design information between OEM and remanufacturer is not a feasible solution and/or option in many cases. Hence, the only way we can help increase the remanufacturability of those product

19、s is by improving the remanufacturing processes. In this paper, we present some of our findings which, interestingly enough, indicate that the introduction of lean production techniques (which are one of the main causes of part proliferation and product diversity) in the remanufacturing industry, an

20、d hence creating lean remanufacturing processes, can lead to significant process improvements and savings compared to the current remanufacturing processes which are heavily batch oriented. In this paper, a solution to the parts proliferation problem of independent automobile parts remanufacturers i

21、s developed by transforming a current remanufacturing process of an automobile clutch into a lean remanufacturing process. This lean clutch remanufacturing process has been developed in great detail in (Amezquita, 1996). In this paper, we will discuss the as-is process, followed by a discussion on h

22、ow to convert this process into a lean remanufacturing process. It should be stated up-front that although the proposed lean process offers substantial savings, it has not been implemented by the company who supported this case study. First, however, we will provide the necessary background on craft

23、, mass, and lean production systems.2Craft, Mass, and Lean ProductionIn the 1800s, automobile manufacturing was the domain of the skilled craftsmen who controlled most of the activities on the manufacturing floor. These skilled craftsmen designed and built customized vehicles by making and fitting e

24、ach part by filing it down until it mated with the other vehicle parts. Even if craft producers could make 10,000 identical cars, the price per car would not have dropped by much, because each car was essentially a prototype. The biggest benefits of this craft production system in the automotive ind

25、ustry were that: customers were able to obtain products which specifically met their needs, andworkers were satisfied, proud, and fulfilled, and their goal was to hone and perfect their skills and one day become independent owners.At the turn of the century, Frederick Taylor removed the control of t

26、he manufacturing operations from the hands of the skilled craftsmen by creating divisions of labor. This was the first step towards the development of mass production, which was fully implemented by Henry Ford. Taking the developments of Taylor, Ford added the standardization of the production of pa

27、rts, which led to complete parts interchangeability, which in turn led to the simplification of parts assembly. In 1908, an assembler was spending 514 minutes (8.56 hours) assembling a large portion of the car before moving to the next car (Womack, et al., 1991). To reduce the cycle time of assemble

28、rs (period of time spent with each vehicle by each employee), Ford had each assembler perform a single task and move from vehicle to vehicle in the assembly hall. The cycle time per vehicle was reduced from 8.56 hours to 2.3 minutes (Womack, et al., 1991)! Finally, the simplification of assembly tas

29、ks allowed Ford to utilize the moving assembly line to bring the cars to the assemblers and eliminate all the walking previously done. In addition, the moving assembly line enforced a faster and even work pace. Fords implementation of the moving assembly line, which brought the car past the stationa

30、ry worker, cut cycle time even further from 2.3 minutes to 1.19 minutes (Womack, et al., 1991).Ford discovered that his new system reduced the amount of human effort needed to assemble a vehicle, and with the same number of people, equipment, etc., the more standardized vehicles he produced, the mor

31、e the cost per vehicle dropped (economies of scale). By the time Ford reached volumes of two million identical vehicles per year, he had slashed the real cost to the consumer by an additional two thirds from the time he started production of the Model T in 1908. Consequently, a production system whi

32、ch most closely resembles the mass production system can bring substantial savings to a remanufacturer, and is often advocated. However, this system runs aground when confronted with a large variety of parts, which is the current situation many independent automotive remanufacturers are facing. Most

33、 automotive parts remanufacturers (and other remanufacturers) still rely on craft production systems to handle the variability in the number of parts to be remanufactured and the variability inherent in refurbishing operations due to wear differences. However, as noted already by Henry Ford, craft p

34、roduction system has two main drawbacks:1)Production costs remain high regardless of volume (economies of scale are not possible, e.g. Ferrari Automobiles).2)Quality, consistency, and reliability are poor due to the lack of standardization.Thus, a different approach to remanufacturing which uses ele

35、ments of the mass and craft production systems may prove to be more suitable for automotive parts remanufacturing.Lean production takes the best elements of the craft and mass production systems. This system was developed by the Toyota Motors Corporation, and later is was implemented by all Japanese

36、 automotive manufacturers. Lean production can be defined as an entire production system with the following fundamental characteristics:1)Economies of scale (from mass production),2)Production of large varieties of products (from craft production),3)Elimination of non-value added resources and activ

37、ities, and4)Integration of all production system elements and functions to obtain long term functional relationships.Compared to the lean production system, the traditional mass production system can be fundamentally defined as having the following characteristics:1)Economies of scale,2)Very limited

38、 range of product varieties,3)Non-value added resources and activities are perceived as necessary, and 4)Division of all production system elements and functions to obtain specialization resulting in short term strained relationships. Given the fact that the lean production system is most suitable f

39、or the production of large varieties of products, and it allows the attainment of economies of scale, it would seem that using this production system as a basis for remanufacturing processes would provide better results than the ones currently obtained, which are forcing independent parts remanufact

40、urers away from remanufacturing. In the remainder of this paper the remanufacturing process of an automobile clutch at one of the largest independent automotive parts remanufacturers is used as a case study. 3Automobile Clutch Remanufacturing at RaylocThe Rayloc Company is a division of the Genuine

41、Parts Company which provides aftermarket replacement parts at 6,500 NAPA Auto Parts stores nationwide. Rayloc is one of the largest automotive parts remanufacturers in the world, and they remanufacture parts such as alternators, starters, drive shafts, brake master cylinders, calipers, wiper motors,

42、 window lift motors, rack and pinion units, steering boxes, power steering pumps, brake shoes, disc brakes and clutches. The focus of this paper is placed on the remanufacturing process of clutches.The clutch remanufacturing process at Rayloc was analyzed for six months at one of the remanufacturing

43、 plants. The process material flow is represented schematically in Figure 1.Figure 1 - Current Clutch Remanufacturing Process Material Flow With BatchingIn this process cores are supplied by customers, and are accumulated randomly in drums without identification at the NAPA jobbers or retailers. Cor

44、es (c1, c2, etc., see Figure 1) are then identified and sorted by part number and manufacturer, and are again accumulated in a core warehouse at the Rayloc plant. Based on a forecast, cores are removed from a core warehouse and processed in a batch. Batches of the same part number are randomly mixed

45、 and the reusable components are assembled together with replacement component parts. Non-reusable components are recycled after work has been done on them. The remanufactured cores (rc1, rc2, etc., see Figure 1) are placed in a finished goods warehouse to start the cycle over again after a customer

46、 buys the remanufactured clutch. The assumption behind this remanufacturing process is that identical cores can be easily collected into economic batches and together they can be disassembled, cleaned, inspected, refurbished, and reassembled. The process is distinguished by having large enough volum

47、es to obtain some form of economies of scale. The practice of batching in remanufacturing was adopted from mass production, but batching is also done in remanufacturing for the purpose of cannibalizing reusable parts and reduce the need to purchase new manufactured replacement parts. Purchasing manu

48、factured replacement components is for the most part more expensive than cannibalizing cores. In fact, a fundamental principle of economic remanufacturing is the maximization the reused content in finished remanufactured products. After the completion of the study, the clutch remanufacturing process

49、 was characterized using the criteria as shown in Table 1. The characteristics of this process reflect the problems and issues independent auto parts remanufacturers face, and are not indicators that Rayloc is poorly run. In fact, Rayloc is one of the most efficient remanufacturers in the U.S.A. with a proven track record exe

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服