ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:178KB ,
资源ID:3008492      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3008492.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(概率论与数理统计结课论文.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

概率论与数理统计结课论文.doc

1、班级:1533105 学号:1153310522 姓名:李大帅概率论的发展与应用摘要:概率论与数理统计是一门研究随机现象及其规律性的数学学科。通过实验来观察随机现象,揭示其规律性,或根据实际问题的具体情况找出随机现象的规律。它起源于17世纪中叶,法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中提出的一些问题。由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。发展到今天,概率论与数理统计在自然科学,社会科学,工业生产,金融及日常生活实际等诸多领域中起着不可替代的作用。关键词:概率论与数理统计;起源与发展;应用1. 概率论的起源与发展

2、 1.1 概率论的起源概率论的起源与赌博有关,在17世纪中叶,一位名叫德梅尔的赌徒向帕斯卡提出了“分赌注问题”即两个人决定赌若干局,事先约定谁先赢得s局便算赢家。如果在一个人赢a(as) 局,另一人赢b(bs) 局时因故终止赌博,应如何分赌本。帕斯卡将这一问题和他的解法寄给费马,他们频频通信,互相交流,围绕赌博中的数学问题开始了深入的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念数学期望,这是描

3、述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。 年,他将自己的研究成果写成了专著论掷骰子游戏中的计算。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。1.2 概率论的发展到了18,19世纪,随着科学的发展,人们注意到社会科学和自然科学中许多随机现象与机会游戏之间十分相似,如人口统计、误差理论、产品检验和质量控制等,从而由机会游戏起源的概率论被应用于这些领域中,同时也大大促进了概率论本身的发展,瑞士数学家伯努利作为使概率论成为数学的一个分枝的奠基人之一,

4、建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。随后,埭莫弗和拉普拉斯又导出了第二个基本极限定理(即中心极限定理)的原始形式,拉普拉斯在其分析的概率理论一书中,明确的给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家切比雪夫、马尔代夫、李雅普诺夫等人用分析的方法建立了大数定律及中心极限定理的一般形式,科学的解释了为什么在实际中遇到的许多随机变量都近似服从于正态分布。20世纪初,由于大量实际问题的需要,特别受物理学的刺激,人们开始研究随机过程。爱因斯坦、维纳和列维等人对生物学家布朗在显微镜下观测到的

5、花粉微粒的无规则运动进行了开创性的理论分析,提出了布朗运动数学模型,并进行了系统的研究;爱尔兰等人则在电话流呼唤中研究了泊松过程,成为排队论的开创者;费勒等在生物群体生长模型中提出了生灭过程;克拉默、维纳、辛钦等人系统研究了平稳过程;科尔莫果洛夫、费勒和多布则开创了更一般的马尔科夫过程和鞅论的系统研究。至今,对于随机过程的研究以及与其他新兴学科的交叉而形成的边缘学科的研究仍在继续。2. 概率论应用的预备知识在谈及应用之前,先澄清一下多数人在概率方面的几个误解。大部分人认为一件事件概率为零即为不可能事件,这种观点是错误的。在几何概率中,显然内每一点的面积均为零,概率也为零,但其发生的可能性并非没

6、有,只不过是微乎其微,因而不是不可能事件,而是近似不可能事件。还有一些人在做决策时,认为这件事情的概率成功是,那么只要进行次决策,就一定会有次成功,但这样是非常不合理的。由切比雪夫大数定律:设是相互独立的随机变量序列,若存在常数,使得,则对任意,有,因此只有当n取较大值,即进行更多次决策后,才能有更高的可能性实现实决策结果和期望值有较小的误差。3. 概率论的应用3.1 概率论在自然科学中的应用问题:为统计昆虫下一代数量,发现昆虫产个卵的概率,又知道一个虫卵能孵化成昆虫的概率为,且卵的孵化相互独立的,由此估计昆虫下一代有条概率。答:设昆虫下一代有条为事件,昆虫产个卵为事件。昆虫下一代有条,那么昆

7、虫至少需产个卵,所以。当昆虫产个卵时,昆虫下一代有条的概率。由全概率公式得:3.2 概率论在社会科学中的应用问题:在调查家庭暴力所占家庭的比例时,为得到真实的同时又不侵犯个人隐私,调查人员将袋中放入比例是的红球和比例是的白球。让调查者从袋中任取一球查看后返回,若取到白球,回答问题:你的生日是否在7月1日之前?若取到红球,回答问题:你的家庭是否存在家庭暴力?被调查者无论回答的是问题还是问题,只需在匿名调查表中选择“是”(有家庭暴力)或“否”,然后将表放入投票箱,没人能知道被调查者回答的是问题还是问题。如果声称有家庭暴力的家庭比例是,如何求。答:由全概率公式得:其中,当被调查者人数较多时,将以上各

8、量代入到式中得实际问题中,是未知的,需要经过调查得到。假设调查了个家庭,其中有个家庭回答“是”,则可用估计,从而可用估计。如果袋中装有30个红球,20个白球,调查了1672个家庭,其中有363个家庭回答“是”,则 3.3 概率论在工业生产中的应用问题:设有件产品,其中有件次品,现在进行次有返回的抽样,每次抽取一件。求这次中共抽到的次品数的概率分布。答:由于抽样有放回的,因此这是重伯努利实验,若以表示一次抽样中抽到次品这一事件,则 故,即 .3.4 概率论在防范金融风险中的应用 问题:设某公司拥有三支获利是独立的股票,且三种股票获利的概率分别为0.8、0.6、0.5,求:(1)任两种股票至少有一

9、种获利的概率;(2)三种股票至少有一种股票获利的概率。 设分别表示三种股票获利,答:依题意相互独立。则由乘法公式与加法公式: (1) 任两种股票至少有一种获利等价于三种股票至少有两种获利的概率。 (2)三种股票至少有一种股票获利的概率。 在长期的投资实践活动中,人们发现,投资者手中持有多种不同风险的证券,可以减轻所遇风险带来的损失。对于投资若干种不同风险与收益的证券形成的证券组,称为证券投资组合,其主要内容是在投资者为追求高的投资预期收益,并希望尽可能躲避风险的前提下,以解决如何最有效地分散组合证券风险,求得最大收益。计算结果表明:投资于多只股票获利的概率大于投资于单只股票获利的概率这就是投资

10、决策中分散风险的一种策略。 3.5 概率论在日常生活实际中的应用已知某网站每天的登录人数服从参数为的泊松分布,而进入该网站的每个人打开某网页的概率为,试求访问该网页人数的分布律及其数学期望。解:以表示登录网站的人数,表示访问某网页的人数.依题意:由全概率公式得:数学期望具有广泛的应用价值。实践证明当风险决策问题较为复杂时,决策者在保持自身判断的条件下处理大量信息的能力将减弱,在这种情况下,风险决策的分析方法可为决策者提供强有力的科学工具,以帮助决策者作出决策,但不能代替决策者进行决策。因为在现实生活中的风险决策还会受到诸多因素的影响,决策者的心理因素,社会上的诸多因素等,人们还需综合各方面的因素作出更加合理的决断。4. 参考文献1.王勇.概率论与数理统计(第二版).北京:高等教育出版社.20142.肖筱南.新编概率论与数理统计M.北京:北京大学出版社.2002. 49 51. (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服