1、“三井化学杯”化工设计大赛 三井化学杯大学生化工设计竞赛项目名称:年产2万吨碳酸二甲酯合成项目 初步设计说明书 目录设计概述I第一部分 工艺介绍I一、设计工艺描述I二、工艺创新I三、工艺流程详细说明I第二部分 热量集成III第三部分 工厂设计IV一、主要设备IV二、工厂平面布置IV第四部分 经济评价IV第五部分 总结VDESIGN OVERVIEWVIPart Technology IntroductionVI1、Description of the Design ProcessVI2、Process InnovationVI三、Process DetailsVII2.Pre-separati
2、on construction sectionVII3.Rectification sectionVIII4.Catalyst RecoveryVIIIPart Heat IntegrationIXPart Plant DesignIX1.Major equipmentIX2.Plant LayoutXPart Economic evaluationXPart V SummaryX第1章 项目总论11.1 项目概述11.2 工作依据11.2.1 国家政策11.2.2 地方政府政策21.2.3 DMC的概述及应用31.3 市场需求及生产能力分析41.31 国内外市场需求分析41.3.2 生产能力
3、分析101.4 DMC的价格11第二章 总图及运输132.1 厂址概况132.1.1 地理位置及厂区概况132.1.2 原料和市场132.1.3 自然条件142.1.4 基础设施及投资环境142.1.5 总述192.2 工厂平面布置192.2.1 厂区布局192.2.2 布局说明202.3 工厂运输22第三章 化工工艺233.1 工艺概述233.2 原料路线选择 从丙烯到碳酸丙烯酯233.2.1 原料的选择233.2.2 工艺介绍303.2.3 原料预处理流程设计303.2.4 合成段工艺流程313.2.5 经济性评价323.3 精馏工艺选择及论证323.3.1 碳酸二甲酯合成部分323.3.
4、2 精馏方法353.3.3 碳酸二甲酯的分离363.4 生产流程叙述373.4.1 合成流程的模拟373.5 分离543.5.1 模拟结果(见流程说明)543.5.2 流程特色553.6 三废治理553.6.1 三废的产生553.6.2 三废的组成分析563.6.3 三废的处理方法573.7 物料及能量衡算583.8 工艺设备一览表(详见附录6)593.9 机构及人员593.9.1 组织结构593.9.2 职能593.9.3 人员编制60第四章 空压站624.1 概述624.2 全厂压缩空气状况624.3 氮站624.3.1 概述624.3.2 全厂氮气使用状况63第五章 自动控制645.1
5、全厂自控水平和主要控制方案645.1.1 范围645.1.2 自控水平645.1.3 主要控制方案645.1.4 通讯网络655.1.5 安全和保护措施655.2 仪表选型的确定655.2.1 选型原则655.2.2 控制室监控系统665.2.3 现场仪表665.3 动力供应685.3.1 仪表电源685.3.2 仪表气源685.4 泵的选型685.4.1 石油,化工装置对泵的要求685.4.2 原动机类型的确定695.4.3 电动机类型的确定695.4.4 泵的配管要求695.5 仪表修理车间705.5.1 仪表维修定员705.5.2 工作间设置705.5.3 维修设备选型705.6 精馏塔
6、的控制715.6.1 再沸器热量控制715.6.2 冷凝罐和回流罐的控制715.6.3 浆态床反应器的控制715.6.4 储罐的控制系统725.6.5 泵的控制72第六章 供电和电信736.1 设计依据736.2 设计原则736.3 供电电源及工厂电源供电线路746.4 照明系统746.5 电气设备746.5.1 电气设备的结构型式:746.5.2 电气系统的控制、保护和报警系统756.6 防雷和防静电756.6.1 装设避雷器756.6.2 采用的主要标准756.6.3 储罐区装置防静电756.6.4 厂区普通建筑物防雷766.6.5 厂区户外装置的防雷766.7 电信工程76第七章 土建7
7、87.1 概述787.2 设计依据787.2.1 化工建筑的防火防爆防腐787.3 生产工艺流程图797.3.1 厂房布置图797.3.2 设备一览表797.3.3 劳动保护条件797.3.4 安装运输80第八章 给水和排水818.1 设计依据818.2 水源818.2.1 生产水源818.2.2 生活水源818.2.3 消防水源818.3 给水系统818.3.1 室内给水系统818.3.2 室外给水系统828.3.3 消防给水系统828.4 排水系统828.4.1 生活排水系统828.4.2 雨水排水系统828.4.3 其它用水838.5 管道防腐、保温、涂漆838.6 用水量一览表83第九
8、章 供热849.1 概述849.2 热公用工程849.3 换热设备84第十章 环境保护8510.1 编制依据8510.2 主要污染源及污染物8510.2.1 大气污染物8510.2.2 噪声8510.2.3 废水8510.2.4 固体废弃物8510.2.5 对生态的影响8610.2.6 风险事故影响8610.3 执行的环境质量标准及排放标准8610.4 设计中采取的环保措施8710.4.1 建设期污染防治措施8710.4.2 运营期污染防治措施8710.4.3 饮用水源保护88第十一章 采暖通风和空气调节8911.1 设计依据8911.2 厂址所在地气候情况8911.3 设计参数8911.4
9、设计范围9011.5 设计方案9011.5.1 采暖9011.5.2 通 风91第十二章 外部工艺及管道9212.1 概述9212.2 管道的布置及敷设原则9212.2.1 管道布置9212.2.2 管道敷设9212.2.3 道路走向9312.2.4 管道连接9312.2.5 安全措施9312.2.6 架空要求9312.3 管道设计9312.3.1 管子直径的选择9412.3.2 管壁厚度9412.3.3 管道材质9412.3.4 管道的保温95第十三章 储运9613.1 编制依据9613.2 储罐布置情况9613.3 储罐设计情况9613.4 罐区安全措施9713.5 产品运输情况97第十四
10、章 维修9914.1 修理任务9914.2 维修手段9914.2.1 热交换器的检查及修理9914.2.2 塔、槽日常检查10114.2.3 管道系统的维修检查10214.2.4 泵的检查与处理10214.2.5 电动机的维修保养10414.2.6 过滤器的日常检查和保养10414.3维修设备及维修人员105第十五章 消防10715.1 设计依据10715.2 设计范围10715.3 火险分析10715.4 消防环境10815.5 消防给水10815.6 建筑情况10815.7 防火措施10915.7.1 自动控制系统10915.7.2 其它防火措施109第十六章 职业安全及工业卫生11216
11、.1 设计依据11216.2.1 生产过程中的危险化学品11216.2.2 生产过程中的其它危害11216.3 卫生安全管理措施11316.3.1 场地卫生管理11316.3.2 防止中毒事故11316.3.3 防止爆炸事故11316.3.4 安全操作11416.4 厂内绿化117第十七章 财务分析11817.1 产品成本的估算11817.1.1 产品成本和费用估算的依据和说明11817.1.2 成本费用估算11817.2 销售收入估算11817.3 其他数据11917.3.1 资金使用计划11917.3.2 建设进度及生产负荷11917.3.3 流转税金及附加估算11917.3.5 盈亏平衡
12、分析11917.4 财务价格及数量11917.5 财务小结120附录1 物料横算130一、总物料衡算130二、合成反应工段131三、分离二甲醚工段132四、分离碳酸二甲酯工段133五、分离丙二醇工段133六、分离二丙二醇工段134附录2 热量衡算136一、概述136二、热量平衡计算137三、物理变化的热效应137四、精馏塔的热量衡算140五、余热发电系统的热量衡算142六、整个体系的总热量衡算142附录3 余热利用系统144附录4 PID控制点一览表145一、反应单元的控制点一览表145附表5 参考数据152附录6 换热器一览表153附录七 设备一览表158一、设备一览表158二、部分设备参数
13、及说明161附录8 Aspen plus模拟结果表164附录9 精馏塔设计说明书169一、设计内容169二、确定精馏装置流程:169三、工艺参数的确定170四、主要设备的工艺尺寸计算171五、流体力学计算171六、主要附属设备设计计算及选型171七、Aspen plus软件模拟数据结果177附录10 反应器设计说明书185一、严格遵守以下标准:185二、碳酸二甲酯合成塔186参考文献1882设计概述设计概述随着世界经济水平,科学文化水平的不断发展,碳酸二甲酯作为一种符合现代清洁工艺要求的环保型化工原料其合成技术受到了国内外化工界的广泛重视,我国化工部在八五和九五期间将其列为重点项目。本项目是中
14、海油天津分公司年产2万吨碳酸二甲酯的项目,本项目厂址选择在地理环境优越,自然资源丰富的天津市塘沽区。本项目主要是由总厂石油裂解得到的丙烯为基础制得碳酸丙烯作为原料来生产碳酸二甲酯,所选厂址临近渤海,有着丰富的石油资源且交通极其便利,周围有着发达的公路,铁路,以及水路交通运输能力。并且本项目所在地区市场消费能力较强,紧邻北京,河北等经济及工业发达市场。第一部分 工艺介绍一、设计工艺描述本工艺由石油裂解得到的丙烯,丙烯催化氧化制得环氧丙烷,环氧丙烷与二氧化碳催化得碳酸丙烯酯,最终以碳酸丙烯酯为原料,采用工艺成熟的酯交换法制备碳酸二甲酯,同时副产丙二醇。其中碳酸二甲酯年产量为20000吨,丙二醇年产
15、量17400吨。二、工艺创新1)在本次设计中换热部分采用了自热式换热器,利用产品碳酸二甲酯的高温给原料回流及侧线回流甲醇加热。2)本项目自行设计了一套低温余热发电系统,该系统以产品丙二醇为热源进行发电在设计范围内预计年发电量达20万kwh。该项电量将占全厂的25%。3)设备投资少,工艺更加成熟稳定,投资回报年限短,回报率高。三、工艺流程详细说明1、反应工段甲醇预热汽化后通入精馏塔和液相的碳酸丙烯酯进行如下反应:应温度72,一个大气压。塔底重组分和催化剂经底物回收工段处理可以循环回反应器C-201循环利用。反应后塔顶主要组分为CH4O、C3H6O3、C2H6O、H2O,塔底主要组分为C4H6O3
16、、C3H8O2。图a 碳酸二甲酯合成工段2、预分离工段经过反应器初步分离的塔顶产物经离心泵直接打入塔C-202进行初步分离,操作进料温度为58.43、塔底140压力1atm,在此温度下甲醇与碳酸二甲酯形成共沸物,且共沸物的沸点较高,此温度下进行精馏。二甲醚在塔顶被蒸出,温度:8、压力1atm下模拟流程图如图b所示。图b 预分离工段3、精馏段由塔C-202初步分离得到的塔底甲醇-碳酸二甲酯的共沸物经离心泵加压后温度为67.94,压力1.5Mp,在1.5 Mp下操作进料,塔底140,进行精馏。模拟流程图如图所示。泵进出口温度为259,精馏塔塔顶回流的甲醇温度为154.39,组成图c所示。图c 精馏
17、段4、催化剂回收在这部分里,我们主要是进行催化剂的回收及副产物提纯,主要因为催化剂甲醇钠的沸点较高,在精馏过程中被留在塔底,C-201塔底流出物温度190,压力110kPa,直接打入塔C-204进行精馏该过程主要是进行副产物的提纯及催化剂的回收,操作温度压力下副产物1,2-丙二醇被蒸出,催化剂仍然留在塔底参与进一步的精馏。塔底液体直接打入C-205进行回收。图d 催化剂回收第二部分 热量集成通过Aspen plus 软件对整个工艺流程进行全程模拟,并利用Aspen tasc软件对换热部分的流量、能量等进行单独的计算,在设计中利用精馏塔流出的高温物流对循环甲醇和进料物流进行加热,这样不但节省对高
18、温物流冷却所需的冷却水,又节省了对进料物流的加热所用的中压蒸气。另外在设计中利用丙二醇出塔的余热进行发电,预计年发电量达20万kwh。该项电量将占全厂的25%。这样既达到了降低成本的目的,同时也达到了节约能源,绿色化工的目的。在公共部分利用产物热量预热原料,并利用额外部分进行开发了先进的余热发电,合理利用了资源。第三部分 工厂设计一、主要设备根据工艺设计的需要,计算选型了反应器,精馏塔,以及换热器,并设计了自热型预热系统。并完成了泵的选型,校核。开发了预热发电系统。二、工厂平面布置依据相关的国家标准,在考虑厂区工人工作环境的安全,原料、产品的运输和下一期扩建预留地的基础上,利用AutoCAD
19、对工厂进行了平面设计,并用3DS MAX 作了三维效果图。采用sketchup 进行排管,还对每个阀门、弯管、三通等进行了详细设计第四部分 经济评价表a 原料及动力项目数量碳酸丙烯酯23300t甲醇14160t催化剂100kg燃料煤1000t电800000kwh水4000t全场定员63人总投资19454.3万元年净利润5416.68万元表b 生产规模项目数量碳酸二甲酯20000t丙二醇17400t二甲醚388t二丙二醇236t设备年运行时间8000h表c财务指标项目数量投资利润率31.327%成本费用利润率27.386%投资回收期(所得税后)5年全投资净现值81850.5万元全投资净现值158
20、380.5万元盈亏平衡点5.212%第五部分 总结我们主要完成了工艺路线的比较和选择、Aspen Plus 全流程模拟、Aspen tasc。热量衡算、主要设备设计与选型、工艺流程图(PFD)、带控制点工艺流程图(PID)、全厂布置(AutoCAD、3D)、车间布置(AutoCAD、3D)、布管(sktchup),以及余热发电系统的设计开发。另外我们还完成了可行性分析、公用工程、自动控制、技术安全、防火及工业卫生、维修、土建、环保、经营管理、投资及财务估算。详细内容请参见相关文件。Design OverviewWith the continuous development of the wor
21、ld economic level and scientific and cultural level, the synthesis technology of dimethyl carbonate has been extensive attention by chemical industry at home and abroad as a environment-friendly chemical material which meet modern clean process.The production of dimethyl carbonate was listed as key
22、projects during the Eighth Five-Year Plan and the Ninth Five-Year Plan by Chinas Ministry of Chemical Industry. The design was about the production of dimethyl carbonate.The item was commissioned by CNOOC Tianjin Branch.The plant site was selected at Tanggu District of Tianjin which geographical loc
23、ation is superior and natural resources is rich.Dimethyl carbonate was producted by propylene carbonate as material. Propylene carbonate was prepared by propylene which was achieved from the cracking of petroleum.The selected site is closed to the Bohai Sea ,and oil resources is rich and the traffic
24、 is extremely convenient. It has a well-developed surrounding roads, railways, and waterborne transport capacity. There is strong consume market and close to developed economy and industrial market of Beijing and Hebei.Part Technology Introduction1、Description of the Design ProcessDimethyl carbonate
25、 was prepared using ester-interchange method by propylene carbonate as raw materials.The propylene carbonate was producted by catalytic reaction of propylene oxide and carbon dioxide.The propylene oxide was manufactured by catalytic oxidation reaction of propylene. Dimethyl carbonate has a annual ou
26、tput of 20000 tons and propanediol has a annual output of 17400 tons.2、Process Innovation1)Self-heating heat exchanger has been used as the part of heat exchange In this design. and using high-temperature products of dimethyl carbonate to heat raw return Methanol and Lateral line back Methanol.2)Low
27、-temperature waste heat power generation system has been designed by ourself.The system use propylene glycol-dimensional heat source generating,and Annual generation reached 20000kwh. The electricity accounted for 25% of plant3)The device is less investment, Process is more mature, the return on inv
28、estment is short and High rate of return.三、Process Details1. Reaction construction sectionMethanol and propylene carbonate liquid phase carried out in the distillation column reaction after Preheat vaporization. Reaction is as follows.Reaction temperature is 72 degrees Celsius,And1 atm. Bottom re-po
29、ints and the catalyst recycling workshop section through the substrate processing can be recycled back to reactor C-201 recycling. Reaction tower top main group was divided into CH4O,C3H6O3,C2H6O, H2O.Reaction tower bottom main group was divided into C4H6O3,C3H8O2.Figure a Dimethyl carbonate synthes
30、is workshop sectionFigure b pre-separation construction section2.Pre-separation construction sectionReactor tower products were separated by centrifugal pump directly into the tower C-202, operating feed temperature of 58.43, Bottom 140, pressure of 1atm, at this temperature the formation of methano
31、l and dimethyl carbonate azeotrope and azeotrope boiling point higher,carried out under this temperature distillation.Dimethyl ether steam out of the top of the tower is with temperature:8 under the pressure of 1atm simulated flow as shown.3.Rectification sectionMethanol, dimethyl carbonate azeotrop
32、e Isolated by Tower C-202.then after pressured by the centrifugal pump in temperature 67.94, Pressure 1.5Mp. for distillation. Simulation flow chart shown in Figure 3-11. Pump import and export of temperature of 259 , material composition, such as Table 3-7. The methanol distillation tower reflux te
33、mperature 154.39 , the composition shown below.Figure C distillation section4.Catalyst RecoveryIn this section,We are mainly for catalyst recovery and purification of by-products,mainly due to the higher boiling point of sodium methoxide catalyst in the distillation process was to stay in the tower
34、bottom, C-201 tower bottom temperature of 190 effluent, pressure 110kPa formed as in Table 3-12, directly into the distillation column C-204 carried out this process is mainly carried out by-product of the purification and catalyst recycling, operating temperature and pressure under the by-product 1
35、,2 - propanediol has been steamed out, the catalyst remained in the tower bottom to participate in further distillation. Bottom fluid directly into the C-205 for recycling.Figure d catalyst recyclingPart Heat IntegrationWe simulate the entire process by Aspen plus software, And use Aspen tasc softwa
36、re part of the flow of heat transfer, energy, etc. In the design flow using the high temperature distillation of methanol and the logistics of the feeding cycle logistics heating,This will not only save on the high-temperature cooling water required for cooling the logistics, but also saves on the f
37、eed used by the logistics of the heating medium pressure steam,In addition the use of propylene glycol in the design of waste heat to generate electricity out of the tower is expected to an annual generation capacity of 200,000 kwh,The power plant will be accounted for 25%. This will not only achiev
38、e the purpose of reducing costs, but also to achieve energy-saving, green chemical purposes. The use of the product in the public part of the heat preheat raw materials, and use of additional parts of the development of advanced waste heat power generation and rational use of resources.Part Plant De
39、sign1.Major equipmentProcess design based on the needs We calculate the selection of the reactor, distillation column, heat exchanger.as well as heat exchanger, and designed self-heat-type preheating system. And completed the pump selection, calibration. A warm-generation systems has developed.2.Pla
40、nt LayoutIn accordance with relevant national standards, we use AutoCAD to the factory in graphic design, and made a three-dimensional effect with the 3DS MAX map. Using sketchup to calandria, but also for each valve, elbow, tee Etc. have been detailed design. based onconsidering the safety of facto
41、ry workers and the working environment,raw materials, products,transportation and land reserved for the next phase of the expansionPart Economic evaluationTable a production scaleDimethyl20000tPropanediol17400tDME388tpropanediol236t2Equipment, annual operating time of8000hTable b Raw materials and p
42、owerPropylene23300tMethanol14160tCatalyst100kgFuel coal1000tElectric800000kwhWater4000tOverall Capacity:62人Total investment1,945,430,000Annual net profit5,416.680,000Table c Financial IndicatorsROI31.327%Cost margins27.386%Payback period (after-tax)5yearNet present value of all investments8,185,050,
43、000Net present value of all investments158,3805,000Break-even point5.212%Part V SummaryOur main line, completed the process of comparison and choice, Aspen Plus the whole process simulation, Aspen tasc.Heat balance, the main equipment design and selection, process flow diagram (PFD), with a flow cha
44、rt of control points (PID), The plant layout (AutoCAD,3D), plant layout (AutoCAD,3D), piping (sktchup), designed and developmented waste heat power generation system In addition, we also completed a feasibility analysis, utility engineering, automatic control, technical security, fire protection and industrial hygiene, maintenance, construction, environmental protection, management, investment and financial estimates. Details please see the relevant documents.第一章 项目总论第1章 项目总论项目可行性研究是通过有关的资料、数据的调查研究,对项目的技术、经济、工程、环境等进行最终论证和分析预测,从而提出项目是否值得投资和如何进行建议的可行性意见,为项目决策审批提供全面的依据。本次设计是参考中国石油和化学工业协会、国家统计局
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100