ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:1.83MB ,
资源ID:3005181      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3005181.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(具有n-4个悬挂点的双圈补图的最小特征值的下界.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

具有n-4个悬挂点的双圈补图的最小特征值的下界.pdf

1、?41?1?2024?1?Journal of Xinjiang University(Natural Science Edition in Chinese and English)Vol.41,No.1Jan.,2024具有n4个悬挂点的双圈补图的最小特征值的下界周恋恋,刘 康,孟吉翔(?830017)摘要:?,?,?.?,?,?n4?n?.关键词:?;?;?;?DOI?10.13568/ki.651094.651316.2023.02.02.0002中图分类号:O157.5文献标识码:A文章编号?2096-7675(2024)01-0020-07引文格式:?n4?J?(?)(?)?2024

2、?41(1)?20-26+36?英文引文格式:ZHOU Lianlian?LIU Kang?MENG Jixiang?The lower bounds of the least eigenvalue of complementsof bicyclic graphs with n4 pendant verticesJ?Journal of Xinjiang University(Natural Science Edition in Chineseand English)?2024?41(1)?20-26+36?The Lower Bounds of the Least Eigenvalue of

3、 Complements ofBicyclic Graphs with n4 Pendant VerticesZHOU Lianlian,LIU Kang,MENG Jixiang(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China)Abstract:The least eigenvalue as a parameter to characterize the structural properties of a graph,has importantresearc

4、h value.Comparing with the spectral radius,the least eigenvalue of a graph is less studied.The graphsin this paper are simple,undirected and connected,and we characterize the lower bounds of the least adjacencyeigenvalue of graphs in the set of bicyclic graphs with n vertices and n4 pendant vertices

5、 by using relevantknowledge analysis and demonstration.Key words:complement graphs;bicyclic graphs;least eigenvalue;lower bounds0概 念?,?G=(V(G),E(G)?V(G)?E(G)?,?V(G)=v1,v2,vn,E(G)=e1,e2,en.?Gc=(V(Gc),E(Gc),?V(Gc)=V(G),E(Gc)=vivj|vi,vjV(G),vivj/E(G).?G?A(G)=(aij)nn,?vi,vj?,aij=1;?aij=0.?A(G)?,?1(G)2(G

6、)n(G),?n(G)?(G),?G?.?A-?.?Bn,n4?n4?n?,?Bcn,n4?.?,?.Johnsonc?1?n?k?,Liu?2?k?n?,Ye?3?n?.?,Fan?4?;Jiang?5?收稿日期:2023-02-02基金项目:?XJEDU2021I001?作者简介:?1997?E-mail?zhou ?通讯作者:?1962?E-mail?1?n4?21?.?,?Bcn,n4?.?,?6-10.1预备知识?G?V(G)=v1,v2,vn,?X=(Xv1,Xv2,Xvn)T?Xvi=X(vi)(1in),?XTA(G)X=2XuvE(G)XuXv(1)?G?v?v?,?NG(v

7、),?v?d(v)=|NG(v)|.?X 6=0?G?,?viV?Xvi=XvjNG(vi)Xvj(2)?.?X Rn?(G)XTA(G)X(3)?X?G?.?Gc?G?.?A(Gc)=J IA(G)(4)?J,I?n?1?.引理111?A?nn?,B?A?mm?,?1(A)2(A)n(A),1(B)2(B)n(B)?A?B?,?i=1,2,m,?nm+i(A)i(B)i(A).2Bcn,n4中最小邻接特征值的下界?H?C3?,?V(H)=v1,v2,v3,v4,?dH(v2)=dH(v4)=3.?p,q,r?s?,?H6(p,q,r,s)?H?v1,v2,v3,v4?p,q,r?s?,?p+

8、q+r+s=n4.?p,q,r?s?0,?H?,?r=0?s=0,?H4(p,q,s)?H5(p,q,r).?p,q,r?s?0,?H?,?p=r=0,q=s=0?r=s=0,?H1(q,s),H2(p,r)?H3(p,q)(?1).图 1有 n4 个悬挂点的双圈图引理2?p,q,s?p+q+s=n4.?n 7,?H H1(q,s),H3(p,q)?(Hc)(Hc4(p,q,s),?p,q?s?.证明?X?Hc4(p,q,s)?,vji?vj(j=1,2,3,4)?.?,?vj?.?H4(p,q,s)?v1,v2,v4?2?.情形1 Xv1 Xv4 Xv2(Xv2 Xv4 Xv1,Xv1 Xv

9、2 Xv4?Xv4 Xv2 Xv1?).?v4?(?,Xv4i0,?Xv4iXv1Xv4iXv4Xv4iXv2),?22?2024?v1?H3(s+p,q),?(1)?XTA(Hc3(s+p,q)XXTA(Hc4(p,q,s)X=2sXv4i(Xv4Xv1)0,?(Hc4(p,q,s)(Hc3(s+p,q).?v4?(?,Xv4i 0,?Xv4iXv1Xv4iXv4Xv4iXv2),?v2?H3(p,s+q),?(1)?XTA(Hc3(p,s+q)XXTA(Hc4(p,q,s)X=2sXv4i(Xv4Xv2)0,?(Hc4(p,q,s)(Hc3(p,s+q).情形2 Xv2 Xv1 Xv4(X

10、v4 Xv1 Xv2?).?v1?(?,Xv1i0,?Xv1iXv2Xv1iXv1Xv1iXv4),?v2?H1(p+q,s),?(1)?XTA(Hc1(p+q,s)XXTA(Hc4(p,q,s)X=2pXv1i(Xv1Xv2)0,?(Hc4(p,q,s)(Hc1(p+q,s).?v1?(?,Xv1i 0,?Xv1iXv2Xv1iXv1Xv1iXv4),?v4?H1(q,s+p).?(1)?XTA(Hc1(q,s+p)XXTA(Hc4(p,q,s)X=2pXv1i(Xv1Xv4)0,?(Hc4(p,q,s)(Hc1(q,s+p).引理3?p,q,r?p+q+r=n4.?n 7,?H H2(p,

11、r),H3(p,q)?(Hc)(Hc5(p,q,r),?p,q?r?.?2?,?3?.引理4?p,q,r?s?p+q+r+s=n4.?n8,?H H4(p,q,s),H5(p,q,r)?(Hc)(Hc6(p,q,r,s),?p,q,r?s?.证明?X?Hc6(p,q,r,s)?.?vji?vj(j=1,2,3,4)?.?,?vj?.?Xv1Xv3,?H6(p,q,r,s)?v1,v2,v3,v4?2?.情形1 Xv2 Xv1 Xv3 Xv4(Xv1 Xv2 Xv3 Xv4,Xv1 Xv4 Xv3 Xv2,Xv2 Xv4 Xv1 Xv3,Xv4 Xv1 Xv3 Xv2?Xv4 Xv2 Xv1 X

12、v3?).?v3.?v3?(?,Xv3i 0,?Xv3iXv2 Xv3iXv3 Xv3iXv4),?v2?H4(p,r+q,s),?(1)?XTA(Hc4(p,r+q,s)XXTA(Hc6(p,q,r,s)X=2rXv3i(Xv3Xv2)0,?(Hc6(p,q,r,s)(Hc4(p,r+q,s).?v3?(?,Xv3i 0,?Xv3iXv1Xv3iXv3Xv3iXv4),?v4?H4(p,q,s+r),?(1)?XTA(Hc4(p,q,s+r)XXTA(Hc6(p,q,r,s)X=2rXv3i(Xv3Xv4)0;?(Hc6(p,q,r,s)(Hc4(p,q,s+r).情形2Xv1 Xv3 Xv

13、2 Xv4(Xv1 Xv2 Xv4 Xv3,Xv1 Xv3 Xv2 Xv4,Xv1 Xv3 Xv4 Xv2,Xv1Xv4Xv2Xv3,Xv4Xv1Xv2Xv3?Xv2Xv1Xv4Xv3?).?,?v3?1?,?v2.?v2?(?,Xv2i0,?Xv2iXv1Xv2iXv2Xv2iXv4),?v1?H5(p+q,r,s),?(1)?XTA(Hc5(p+q,r,s)XXTA(Hc6(p,q,r,s)X=2qXv2i(Xv2Xv1)0,?1?n4?23?(Hc6(p,q,r,s)(Hc5(p+q,r,s).?v2?(?,Xv2i 0,?Xv2iXv1Xv2iXv2 s 1?,?(Hc1(q,s)(H

14、c1(q1,s+1).证明?X?Hc1(q,s)?.?K2,2Hc1(q,s)?(K2,2)=2,?1?(Hc1(q,s)2.?,v2?v4?q?s?,?X5?X6,?Xvi=Xi(i=1,2,3,4).?(2)?:X1=X3+qX5+sX6,X2=sX6,X3=X1+qX5+sX6,X4=qX5,X5=X1+X3+X4+(q1)X5+sX6,X6=X1+X2+X3+qX5+(s1)X6.?(EB)X=0,?X=X1X2X3X4X5X6,B=0010qs00000s1000qs0000q01011q1s1110qs1.?PHc1(q,s)=(x+1)n6f(x;q,s),?f(x;q,s)=d

15、et(EB),?f(x;q,s)=x6+(2qs)x5+(4q4s)x4+(24q4s+2qs)x3+(5qs1)x2+(q+s+2qs)xqs.?,?f(x;q,s)=0?.f(x;q1,s+1)f(x;q,s)=(qs1)(x+1)(x(2x+3)1).?qs10,?2,?f(x;q1,s+1)f(x;q,s)=(qs1)(x+1)(x(2x+3)1)0.?n?,PHc1(q1,s+1)PHc1(q,s)0,?(Hc1(q,s)(Hc1(q1,s+1).?5,?1?.推论1?q,s?q+s=n4.?n8,?(Hc1(q,s)(Hc1(n4)/2,(n4)/2),?H1(q,s)=H1(n4

16、)/2,(n4)/2).引理6?n(n 10),?p,r?p+r=n4.?p r 0?,?(Hc2(p,r)(Hc2(p1,r+1).证明?X?Hc2(p,r)?.?r 0,?K2,3 Hc2(p,r)?(K2,3)=6,?1?(Hc2(p,r)6.?,v1?v3?p?r?,?X5?X6,?Xvi=Xi(i=1,2,3,4).?(2)?:X1=X3+rX6,X2=pX5+rX6,X3=X1+pX5,X4=pX5+rX6,X5=X2+X3+X4+(p1)X5+rX6,X6=X1+X2+X4+pX5+(r1)X6.?(EB)X=0,?24?2024?X=X1X2X3X4X5X6,B=00100r0

17、000pr1000p00000pr0111p1r1101pr1.?PHc2(p,r)=(x+1)n6f(x;p,r),?f(x;p,r)=det(EB),?f(x;p,r)=x6+(2pr)x5+(4p4r)x4+(22p2r+2pr)x3+(1+3p+3r+3pr)x2+(2p+2r4pr)x.?,?f(x;p,r)=0?.f(x;p1,r+1)f(x;p,r)=(pr1)x(2x2+3x4).?pr10,?x6,?f(x;p1,r+1)f(x;p,r)=(pr1)x(2x2+3x4)0.?n?,PHc2(p1,r+1)PHc2(p,r)0,?(Hc2(p,r)(Hc2(p1,r+1).?r

18、=0,?X1=X3,X2=pX5,X3=X1+pX5,X4=pX5,X5=X2+X3+X4+(p1)X5.?(EB)X=0,?p+r=n4,?X=X1X2X3X4X5,B=001000000p1000p0000p0111p1.?PHc2(n4,0)=(x+1)n5f(x;n4,0),?f1(x;n4,0)=det(xE B),?f1(x;n4,0)=x5+(n5)x4+(3n11)x3+(5n)x2+(82n)x,?f1(x;n4,0)=0?.?x=1/4413 2.350 78?,f1(2.350 78;n4,0)=70.820 39.258 5n.?n 8?,f1(2.350 78;n4,

19、0)0,?,10?xn2?,y(n2)=2n2+(4n2+36n80)n2+13n260.?,?x 0,?g(x)f2(x;n5,1)0.?,(Hc2(n4,0)(Hc2(n5,1).?6,?2?.推论2?p,r?p+r=n4.?n10,?(Hc2(p,r)(Hc2(n4)/2,(n4)/2),?H2(p,r)=H2(n4)/2,(n4)/2).引理7?p,q?p+q=n4.?pq 0?,?:(i)?n13?,?(Hc3(p,q)(Hc3(n1)/2,(n7)/2),?p=(n1)/2,q=(n7)/2;(ii)?n18?,?(Hc3(p,q)(Hc3(n2)/2,(n6)/2),?p=(n2

20、)/2,q=(n6)/2.证明?p+q=n4,?p,q?,?PHc3(p,q)=(x+1)n6f(x;p,q),?f(x;p,q)=det(EB).(i)?n?,PHc3(p+q+3)/2,(p+q3)/2)PHc3(p,q)=(x+1)n6(f(x;(p+q+3)/2,(p+q3)/2)f(x;p,q).f(Hc3(p+q+3)/2,(p+q 3)/2)(2.8)0,?(Hc3(p+q+3)/2,(p+q 3)/2)2.8.?x 2.8?,f(x;(p+q+3)/2,(p+q3)/2f(x;p,q)=1/4(pq3)(2(pq+1)x3+(5p5q+9)x2+(pq+1)xp+q3)0.?,

21、1/4(pq3)0,?x2.8?,y(x)=2(pq+1)x3+(5p5q+9)x2+(pq+1)xp+q3 2.8,?y(2.8)=2.36+20.04(pq)0,?x2.8?,y(x)?,?y(2.8)=20.8568.504(pq)0.?y(x)0?pq=3,?PHc3(p+q+3)/2,(p+q3)/2)PHc3(p,q)0.(ii)?n?,PHc3(p+q+2)/2,(p+q2)/2)PHc3(p,q)=(x+1)n6(f(x;(p+q+2)/2,(p+q2)/2)f(x;p,q).f(Hc3(p+q+2)/2,(p+q2)/2)(3.3)0,?(Hc3(p+q+2)/2,(p+q2

22、)/2)3.3.?x 3.3?,f(x;(p+q+2)/2,(p+q2)/2)f(x;p,q)=1/4(pq2)(2(pq)x3+(5p5q+4)x2+(pq)xp+q2)0.?,1/4(pq2)0,?x 3.3?,y(x)=2(pq)x3+(5p5q+4)x2+(pq)xp+q2 3.3,?y(3.3)=26.4+33.34(pq)0,?x3.3?,y(x)?,?y(3.3)=41.5621.724(pq)0.?y(x)0?pq=3,?PHc3(p+q+2)/2,(p+q2)/2)PHc3(p,q)0.引理8?n14,?(Hc2(n4)/2,(n4)/2)(Hc1(n4)/2,(n4)/2)

23、.证明?H(n42,n42)=(H(n42,n42),?n?H(n32,n52),?n?(5)PHc2(n4)/2,(n4)/2)PHc1(n4)/2,(n4)/2)=(x+1)n6(f1(n4)/2,(n4)/2)f2(n4)/2,(n4)/2).?1,2?,?n 14?n?,f(Hc1(q,s)(3.175)0,?(Hc1(q,s)0,?x3.175?,y(x)=8x3+(202n)x2+(286n)x+n43.175,?y(3.175)=142.935+6.7n0,?x3.175?,y(x)?,?y(3.175)=0.111 25n147.3350,?y(x)0.?,PHc2(n4)/2

24、,(n4)/2)PHc1(n4)/2,(n4)/2).?n15?n?,f(Hc1(q,s)(3.175)0,?(Hc1(q,s)3.175.?x3.175?,f(Hc2(n3)/2,(n5)/2)f(Hc1(n3)/2,(n5)/2)=(x+1)n61/4(8n32)x3+(2n2+28n78)x2+(6n2+52n106)x+(n28n+15).?x3.175?,y(x)=(1/4)(8n32)x3+(2n2+28n78)x2+(6n2+52n106)x+(n28n+15)3.175,?y(3.175)=1.675n2+29.033 8n144.61 0,?x 3.175?,y(x)?,?y

25、(3.175)=0.027 812 5n236.722 6n+147.363 0,?y(x)PHc1(n3)/2,(n5)/2).?,?n14?,(Hc2(n4)/2,(n4)/2)(Hc1(n4)/2,(n4)/2).引理9?n 13?,?(Hc2(n3)/2,(n5)/2)(Hc3(n1)/2,(n7)/2);?n 18?,?(Hc2(n4)/2,(n4)/2)(Hc3(n4)/2,(n6)/2).证明?2,?7?(5)?,?n 13?n?,PHc2(n3)/2,(n5)/2)PHc3(n1)/2,(n7)/2)=(x+1)n6(f(Hc2(n3)/2,(n5)/2)f(Hc3(n1)/2

26、,(n7)/2)=(x+1)n6(n3)x3(1/2)(n11)n+16)x2+(1/4)(425n)n81)x+(1/4)(n8)n+7).?x 2.8?,y(x)=(n3)x3(1/2)(n11)n+16)x2+(1/4)(425n)n81)x+(1/4)(n8)n+7)2.8,?n5?,y(2.8)=1.55n2+3.22n46.010,?x2.8?,y(x)?,y(2.8)=0.17n210.232n+61.5860.?y(x)PHc3(n1)/2,(n7)/2).?n6?n?,?p+q 18?,PHc2(n4)/2,(n4)/2)PHc3(n4)/2,(n6)/2)=(x+1)n6f

27、(Hc2(n4)/2,(n4)/2)f(Hc3(n4)/2,(n6)/2)=(x+1)n6(n4)x3(1/2)(n8)(n3)x2+(1/4)(425n)n88)x+(1/4)(n8)n+12).?x 3.3?,y(x)=(n4)x3(1/2)(n8)(n3)x2+(1/4)(425n)n88)x+(1/4)(n8)n+12)3.3,?n6?,y(3.3)=2.05n2+6.87n73.480,?x3.3?,y(x)?,?y(3.3)=1.07n212.692n+88.6680,?y(x)0,?PHc3(n4)/2,(n4)/2)PHc3(n4)/2,(n6)/2).?Hc Bcn,n4.?

28、6 n 18?,?MATLAB?(Hc)(Hc2(n4)/2,(n4)/2).?n 19?,?8?9?(Hc)(Hc2(n4)/2,(n4)/2).?n=6?,(Hc2(1,1)=2(p2(64)2)/2=2.?n=7?,(Hc2(1,2)2.234 1(p2(74)2)/22.224 7.?,?n=7?,26?2024?(Hc)6?,g(p2(n4)2)/2)=(n5)2+1(n2)2n80,g(1)=4n0.?,Hc2(n4)/2,(n4)/2)?(p2(n4)2)/2.?n9?n?,?(5)?H2(n4)/2,(n4)/2)=H2(n3)/2,(n5)/2).?B=00100n52000

29、0n32n521000n3200000n32n520111n321n521101n32n521.?PHc2(n3)/2,(n5)/2)=(x+1)n6f(x;(n4)/2,(n4)/2),?f(x;(n4)/2,(n4)/2)=det(xEB)=(1/4)x(4x5+(244n)x4+(6416n)x3+(2n224n+54)x2+(3n212n7)x+40n4n292).?h(x)=4x5+(244n)x4+(6416n)x3+(2n224n+54)x2+(3n212n7)x+40n4n292,?n9?n?h(x)?(p2(n4)2)/2.?n9?,?h(p2(n4)2)/2),h(2.4)

30、?h(1)?0?.?h(p2(n4)2)/2)=9n2n8/2 0,?n 9?h(2.4)?h(2.4)h(2.4)|n=9 26.083 84 0.?h(1)=5n2+40n75.?h(1)=10n+400,?n9?h(1)?h(1)h(1)|n=9=1200,?n9?h(0.851)?h(0.851)h(0.851)|n=11=0.069 3620.?h(n3)=2n4+31n3169n2+393n341,h(n3)=8n3+93n2338n+393,h(n3)=24n2+186n338?h(n3)=48n+1860.?h(n3)?h(n3)h(n3)|n=11=1 1960,?h(n3)

31、?h(n3)h(n3)|n=11=2 7200,?h(n3)?h(n3)h(n3)|n=11=4 4880,h(n2)=8n3+9n2112n+129,h(n2)=24n2+18n112?h(n2)=48n+180.?h(n2)?h(n2)h(n2)|n=11=2 9840,?h(n2)?h(n2)h(n2)|n=11=10 5680,?h(n2)?h(n2)h(n2)|n=11=27 800 0.?n=9?,Hc2(94)/2,(94)/2)=Hc2(2,3).?(Hc2(2,3)2.574 5(p2(94)2)/22.581 1.?,?n8?,?HcBcn,n4?(Hc)(p2(n4)2)

32、/2.参考文献:1JOHNSONC R?SAWIKOWSKA A?Minimizing the least eigenvalue of graphs with fixed order and sizeJ?Discrete Mathemat-ics?2012?312(15)?2272-2285?(下转第36页)36新疆大学学报(自然科学版)(中英文)2024年tencesC/Findings of the Association for Computational Linguistics:EMNLP 2020OnlineStroudsburg,PA,USA:Associationfor Comp

33、utational Linguistics,2020:41-4623BIRD SNLTK:The natural language toolkitC/Proceedings of the COLING/ACL on Interactive Presentation SessionsACM,2006:69-7224YIN W P,SCHUTZE H,XIANG B,et alABCNN:Attention-based convolutional neural network for modeling sentencepairsJTransactions of the Association fo

34、r Computational Linguistics,2016,4:259-27225YANG R Q,ZHANG J H,GAO X,et alSimple and effective text matching with richer alignment featuresC/Proceedings ofthe 57th Annual Meeting of the Association for Computational LinguisticsFlorence,ItalyStroudsburg,PA,USA:Associationfor Computational Linguistics

35、,2019:4699-470926DEVLIN J,CHANG M W,LEE K,et alBERT:Pre-training of deep bidirectional transformers for language understand-ingEB/OL2018:arXiv:1810.04805https:/arxiv.org/abs/1810.04805.pdf27YANG Y,YIH W T,MEEK CWikiQA:A challenge dataset for open-domain question answeringC/Proceedings of the 2015Con

36、ference on Empirical Methods in Natural Language ProcessingLisbon,PortugalStroudsburg,PA,USA:Association forComputational Linguistics,2015:2013-201828WANG M Q,SMITH N A,MITAMURA TWhat is the Jeopardy model?A quasi-synchronous grammar for QAC/EMNLP-CoNLL 2007-Proceedings of the 2007 Joint Conference

37、on Empirical Methods in Natural Language Processing and ComputationalNatural Language LearningJune 28-30,2007,Prague,Czech RepublicStroudsburg:ACL,2007:22-3229LIU T,WANG X,LYU C G,et alSentence matching with syntax-and semantics-aware BERTC/Proceedings of the 28th Inter-national Conference on Comput

38、ational LinguisticsBarcelona,Spain(Online)Stroudsburg,PA,USA:International Committeeon Computational Linguistics,2020:3302-331230ZHANG Z S,WU Y W,ZHAO H,et alSemantics-aware BERT for language understandingJProceedings of the AAAIConference on Artificial Intelligence,2020,34(5):9628-9635责任编辑:张自强(上接第2

39、6页)2LIU R F,ZHAI M Q,SHU J LThe least eigenvalue of unicyclic graphs with n vertices and k pendant verticesJLinear Algebraand Its Applications,2009,431(5/6/7):657-6653YE M L,FAN Y Z,LIANG DThe least eigenvalue of graphs with given connectivityJLinear Algebra and Its Applica-tions,2009,430(4):1375-13

40、794FAN Y Z,ZHANG F F,WANG YThe least eigenvalue of the complements of treesJLinear Algebra and Its Applica-tions,2011,435(9):2150-21555JIANG G S,YU G D,SUN W,et alThe least eigenvalue of graphs whose complements have only two pendent verticesJAppliedMathematics and Computation,2018,331:112-1196GUO J

41、 M,ZHANG G G,WANG Z W,et alThe least eigenvalue of unicyclic graphs with application to spectral spreadJAlgebraColloquium,2022,29(2):265-2727LI S C,WANG S JThe least eigenvalue of the signless Laplacian of the complements of treesJLinear Algebra and ItsApplications,2012,436(7):2398-24058LI Y J,QIN R

42、,LI DOn distance signless Laplacian spectrum of the complements of unicyclic graphs and treesJLinearAlgebra and Its Applications,2021,631:235-2539卢志琴,马小玲 两种分裂点连接运算图的Randi c谱J 新疆大学学报(自然科学版)(中英文),2022,39(5):550-559LU Z Q,MA X LThe Randi c spectrum of two types of splitting-vertex join graphsJJournal o

43、f Xinjiang University(NaturalScience Edition in Chinese and English),2022,39(5):550-559(in Chinese)10QIN R,LI D,CHEN Y Y,et alThe distance eigenvalues of the complements of unicyclic graphsJLinear Algebra and ItsApplications,2020,598:49-6711HAEMERS W HInterlacing eigenvalues and graphsJLinear Algebra and Its Applications,1995,226/227/228:593-616责任编辑:赵新科

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服