ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:18KB ,
资源ID:3003907      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3003907.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2023年初一数学必考的知识点重难点.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年初一数学必考的知识点重难点.docx

1、一、数轴 (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴. 数轴的三要素:原点,单位长度,正方向。 (2)数轴上的点:所有的有理数都可以用数轴上的点表达,但数轴上的点不都表达有理数.(一般取右方向为正方向,数轴上的点相应任意实数,涉及无理数。) (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 二、相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数. (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 (3)多重符号

2、的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 三、绝对值 1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。 ①互为相反数的两个数绝对值相等; ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数. ③有理数的绝对值都是非负数. 2.假如用字母a表达有理数,则数a 绝对值要由字母a自身的取值来拟定: ①当a是正有理数时,a

3、的绝对值是它自身a; ②当a是负有理数时,a的绝对值是它的相反数﹣a; ③当a是零时,a的绝对值是零. 即|a|={a(a>0)0(a=0)﹣a(a<0) 四、有理数大小比较 1.有理数的大小比较 比较有理数的大小可以运用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表达的两个有理数,右边的数总比左边的数大);也可以运用数的性质比较异号两数及0的大小,运用绝对值比较两个负数的大小。 2.有理数大小比较的法则: ①正数都大于0; ②负数都小于0; ③正数大于一切负数; ④两个负数,绝对值大的其值反而小。 规律方法·有理数大小比较的三种方法: (1)

4、法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小. (2)数轴比较:在数轴上右边的点表达的数大于左边的点表达的数. (3)作差比较: 若a﹣b>0,则a>b; 若a﹣b<0,则a<b; 若a﹣b=0,则a=b. 五、有理数的减法 有理数减法法则:减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)   方法指引: ①在进行减法运算时,一方面弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)。 注意:在有理数减法运算时,被减数与减数

5、的位置不能随意互换;由于减法没有互换律。 减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。 六、有理数的乘法 (1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。 (2)任何数同零相乘,都得0。   (3)多个有理数相乘的法则: ①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. ②几个数相乘,有一个因数为0,积就为0。 (4)方法指引 ①运用乘法法则,先拟定符号,再把绝对值相乘. ②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简朴.

6、七、有理数的混合运算 1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;假如有括号,要先做括号内的运算。 2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。 有理数混合运算的四种运算技巧: (1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. (2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. (3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

7、 (4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便. 八、科学记数法—表达较大的数 1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数) 2.规律方法总结 ①科学记数法中a的规定和10的指数n的表达规律为关键,由于10的指数比本来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。 ②记数法规定是大于10的数可用科学记数法表达,实质上绝对值大于10的负数同样可用此法表达,只是前面多一个负号.

8、 九、代数式求值 (1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。 (2)代数式的求值:求代数式的值可以直接代入、计算.假如给出的代数式可以化简,要先化简再求值。 题型简朴总结以下三种: ①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简. 十、规律型:图形的变化类 一方面应找出图形哪些部分发生了变化,是按照什么规律变化的,通过度析找到各部分的变化规律后直接运用规律求解。探寻规律要认真观测、仔细思考,善用联想来解决这类问题。 十一、等式的性质 1.等式的性质 性质1:等

9、式两边加同一个数(或式子)结果仍得等式; 性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式。 2.运用等式的性质解方程 运用等式的性质对方程进行变形,使方程的形式向x=a的形式转化. 应用时要注意把握两关: ①如何变形; ②依据哪一条,变形时只有做到步步有据,才干保证是对的的. 十二、一元一次方程的解 定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。 把方程的解代入原方程,等式左右两边相等。 十三、解一元一次方程 1.解一元一次方程的一般环节 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般环

10、节,针对方程的特点,灵活应用,各种环节都是为使方程逐渐向x=a形式转化。 2.解一元一次方程时先观测方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。 使方程逐渐转化为ax=b的最简形式体现化归思想。 将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,特别a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。 十四、一元一次方程的应用 1.一元一次方程解应用题的类型

11、 (1)探索规律型问题; (2)数字问题; (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%); (4)工程问题(①工作量=人均效率×人数×时间;②假如一件工作分几个阶段完毕,那么各阶段的工作量的和=工作总量); (5)行程问题(路程=速度×时间); (6)等值变换问题; (7)和,差,倍,分问题; (8)分派问题; (9)比赛积分问题;  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。 2.运用方程解决实际问题的基本思绪 一方面审题找出题中的未知量和所有的已知量,直接设规定的未知量或间接设一关键的未知量为x,然后用含

12、x的式子表达相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。 列一元一次方程解应用题的五个环节: (1)审:仔细审题,拟定已知量和未知量,找出它们之间的等量关系. (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数. (3)列:根据等量关系列出方程. (4)解:解方程,求得未知数的值. (5)答:检查未知数的值是否对的,是否符合题意,完整地写出答句. 十五、正方体相对两个面上的文字 (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象. (2)从实物出发,结合具体的

13、问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真拟定哪两个面的对面. 十六、直线、射线、线段 (1)直线、射线、线段的表达方法 ①直线:用一个小写字母表达,如:直线l,或用两个大写字母(直线上的)表达,如直线AB. ②射线:是直线的一部分,用一个小写字母表达,如:射线l;用两个大写字母表达,端点在前,如:射线OA.注意:用两个字母表达时,端点的字母放在前边. ③线段:线段是直线的一部分,用一个小写字母表达,如线段a;用两个表达端点的字母表达,如:线段AB(

14、或线段BA)。 (2)点与直线的位置关系: ①点通过直线,说明点在直线上; ②点不通过直线,说明点在直线外。 十七、两点间的距离 (1)两点间的距离:连接两点间的线段的长度叫两点间的距离。 (2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。 十八、角的概念 (1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。 (2)角的表达方

15、法:角可以用一个大写字母表达,也可以用三个大写字母表达.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表达哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表达,或用阿拉伯数字(∠1,∠2…)表达。 (3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。 (4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。 十九、角平分线的定义 从一个角的顶点出发,把这个角提成

16、相等的两个角的射线叫做这个角的平分线。 ①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。 ②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。 二十、度分秒的运算 (1)度、分、秒的加减运算。 在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。 (2)度、分、秒的乘除运算 ①乘法:度、分、秒分别相乘,结果逢60要进位。 ②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。 二十一、由三视图判断几何体 (1)由三视图想象几何体的形状,一方面,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。 (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析: ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高; ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; ③熟记一些简朴的几何体的三视图对复杂几何体的想象会有帮助; ④运用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服