ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:54.54KB ,
资源ID:3003348      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3003348.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级数学不等式应用题专项练习.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学不等式应用题专项练习.doc

1、一元一次不等式应用题专项练习 1.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数. 2某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出: 运输工具 行驶速度(k

2、m/h) 运输单价(元/t.km) 装卸费用 汽车 50 2 3000 火车 80 1.7 4620 (1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示); (2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?   3.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表: 甲种原料 乙种原料 维生素C含量(单位/千克) 800 200 原料价格(元/kg) 18 14 (1)现制作这种果汁200kg,要求至

3、少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式; (2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式. 4,为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元, (1)求购进A,B两种纪念品每件需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过

4、B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 5.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆

5、电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少? 6.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨. (1)该果农安排甲、乙两种货车时

6、有几种方案请您帮助设计出来; (2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元? 7.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 8.为执行中央

7、节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表: 型号 占地面积 (单位:m2/个 ) 使用农户数 (单位:户/个) 造价 (单位:万元/个) A 15 18 2 B 20 30 3 已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户. (1)满足条件的方案共有几种?写出解答过程; (2)通过计算判断,哪种建造方案最省钱? 参考答案     .   1.

8、 解:(1)m=3x+8; (2)根据题意得:, 解得:5<x<6, 因为x为正整数, 所以x=6, 把x=6代入m=3x+8得,m=26, 答:该校获奖人数为6人,所买课外读物为26本.   2. 解:(1)y1=(2×60)s+5××60+3000=126s+3000; y2=(1.7×60)s+5××60+4620=105.75s+4620; (2)当s=100km时,y1=3000+126×100=15600(元),y2=105.75×100+4620=15195(元). 故为减少费用,果品公司应选择火车货运站运送这批水果更为合算.   3.

9、解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg. 根据题意,得800x+200(200﹣x)≥52000; (2)由题意得,18x+14(200﹣x)≤1800.   4 解:(1)设A,B两种纪念品每件需x元,y元. , 解得:. 答:A,B两种纪念品每件需25元,150元; (2)设购买A种纪念品a件,B种纪念品b件. , 解得≤b≤. 则b=29;30;31;32;33; 则a对应为 226,220;214;208,202. 答:商店共有5种进货方案:进A种纪念品226件,B种纪念品29件;或A种纪念品220件,

10、B种纪念品30件;或A种纪念品214件,B种纪念品31件;或A种纪念品208件,B种纪念品32件;或A种纪念品202件,B种纪念品33件; (3)解法一:方案1利润为:226×20+29×30=5390(元); 方案2利润为:220×20+30×30=5300(元); 方案3利润为:214×20+30×31=5210(元); 方案4利润为:208×20+30×32=5120(元); 方案5利润为:202×20+30×33=5030(元); 故A种纪念品226件,B种纪念品29件利润较大为5390元. 解法二:解:设利润为W元,则W=20a+30b, ∵25a+150b=

11、1000, ∴a=400﹣6b, ∴代入上式得:W=8000﹣90b, ∵﹣90<0, ∴W随着b的增大而减小,∴当b=29时,W最大,即此时a=226时,W最大, ∴W最大=8000﹣90×29=5390(元), 答:方案获利最大为:A种纪念品226件,B种纪念品29件,最大利润为5390元. 5. 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车. 根据题意,得, 解得. 答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车. (2)设工厂有a名熟练工. 根据题意,得12(4a+2n)=240, 2a+n=10, n=10﹣2a, 又a,

12、n都是正整数,0<n<10, 所以n=8,6,4,2. 即工厂有4种新工人的招聘方案. ①n=8,a=1,即新工人8人,熟练工1人; ②n=6,a=2,即新工人6人,熟练工2人; ③n=4,a=3,即新工人4人,熟练工3人; ④n=2,a=4,即新工人2人,熟练工4人. (3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3. 根据题意,得 W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a. 要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大. 显然当n=4,a=3时,工厂每月支出

13、的工资总额W(元)尽可能地少. 6. 解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果, 由题意得:, 解得5≤x≤7,又因为x是整数,所以x=5或6或7, 方案: 方案一:安排甲种货车5辆,乙种货车5辆; 方案二:安排甲种货车6辆,乙种货车4辆; 方案三:安排甲种货车7辆,乙种货车3辆. (2)在方案一中果农应付运输费:5×2 000+5×1300=16 500(元) 在方案二中果农应付运输费:6×2 000+4×1 300=17 200(元) 在方案三中果农应付运输费:7×2 000+3×1 300=17 900(元) 答:选择方案一

14、甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元. 7. 解:(1)设每支钢笔x元,每本笔记本y元. 依题意得:, 解得:, 答:每支钢笔3元,每本笔记本5元. (2)设买a支钢笔,则买笔记本(48﹣a)本, 依题意得:, 解得:20≤a≤24, ∴一共有5种方案. 方案一:购买钢笔20支,则购买笔记本28本; 方案二:购买钢笔21支,则购买笔记本27本; 方案三:购买钢笔22支,则购买笔记本26本; 方案四:购买钢笔23支,则购买笔记本25本; 方案五:购买钢笔24支,则购买笔记本24本. 8. 解:(1)设建造A型沼气池x个

15、则建造B型沼气池(20﹣x)个, 依题意得:, 解得:7≤x≤9. ∵x为整数∴x=7,8,9, 所以满足条件的方案有三种. (2) 解法①:设建造A型沼气池x个时,总费用为y万元,则: y=2x+3(20﹣x)=﹣x+60, ∴y随x增大而减小, 当x=9时,y的值最小,此时y=51(万元). ∴此时方案为:建造A型沼气池9个,建造B型沼气池11个. 解法②:由(1)知共有三种方案,其费用分别为: 方案一:建造A型沼气池7个,建造B型沼气池13个, 总费用为:7×2+13×3=53(万元). 方案二:建造A型沼气池8个,建造B型沼气池12个, 总费用为:8×2+12×3=52(万元). 方案三:建造A型沼气池9个,建造B型沼气池11个, 总费用为:9×2+11×3=51(万元). ∴方案三最省钱.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服