ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:600.50KB ,
资源ID:3002599      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3002599.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学复习课教案新人教版选修22.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学复习课教案新人教版选修22.doc

1、宁夏银川贺兰县第四中学2013-2014学年高中数学 复习课教案 新人教版选修2-23认识数学本质,把握数学本质,增强创新意识,提高创新能力。二、教学重点:进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。难点:认识数学本质,把握数学本质,增强创新意识,提高创新能力三、教学过程:【创设情境】推理与证明推理证明合情推理演绎推理直接证明间接证明类比推理归纳推理 分析法 综合法 反证法数学归纳法一、知识结构:【探索研究】我们从逻辑上分析归纳、类比、演绎的推理形式及特点;揭示了分析法、综合法、数学归纳法和反证法的思维过程及特点。通过学习,进一步感受和体会常用的思维模式和证明方法,形成对数

2、学的完整认识。【例题评析】例1:如图第n个图形是由正边形“扩展”而来,(,)。则第n2个图形中共有_个顶点。变题:黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:第1个第2个第3个则第n个图案中有白色地面砖 块。例2:长方形的对角线与过同一个顶点的两边所成的角为,则=1,将长方形与长方体进行类比,可猜测的结论为:_;变题2:数列的前n项和记为Sn,已知证明:()数列是等比数列;()例3:设f(x)=ax2+bx+c(a0),若函数f(x+1)与函数f(x)的图象关于y轴对称,求证:为偶函数。例4:设Sn=1+ (n1,nN),求证: ()评析:数学归纳法证明不等式时,经常用到“放缩”的

3、技巧。变题:是否存在a、b、c使得等式122+232+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论。 解 假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+n(n+1)2=记Sn=122+232+n(n+1)2(1)n=1时,等式以证,成立。(2)设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)=3(k+1)2+11(k+1)+10也就是说,等式对n=k+1也成立 综上所述,当

4、a=3,b=11,c=10时,题设对一切自然数n均成立 【课堂小结】体会常用的思维模式和证明方法。【反馈练习】1在R上定义运算若不等式对任意实数成立, 则ABCD2定义A*B,B*C,C*D,D*B分别对应下列图形(1)(2)(3)(4)那么下列图形中(1)(2)(3)(4)可以表示A*D,A*C的分别是 ( ) A(1)、(2) B(2)、(3) C(2)、(4) D(1)、(4)3 已知f(n) =(2n+7)3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为( )A 30B 26C 36D 6解析 f(1)=36,f(2)=108=336,f(3)=360=1

5、036f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 证明 n=1,2时,由上得证,设n=k(k2)时,f(k)=(2k+7)3k+9能被36整除,则n=k+1时,f(k+1)f(k)=(2k+9)3k+1(2k+7)3k=(6k+27)3k(2k+7)3k=(4k+20)3k=36(k+5)3k2(k2) f(k+1)能被36整除f(1)不能被大于36的数整除,所求最大的m值等于36 4 已知数列bn是等差数列,b1=1,b1+b2+b10=145 (1)求数列bn的通项公式bn;(2)设数列an的通项an=loga(1+)(其中a0且a1)记Sn是数列an的前n项和,试

6、比较Sn与logabn+1的大小,并证明你的结论 解 (1) 设数列bn的公差为d,由题意得,bn=3n2(2)证明 由bn=3n2知Sn=loga(1+1)+loga(1+)+loga(1+)=loga(1+1)(1+)(1+ )而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)(1+)与的大小 取n=1,有(1+1)=取n=2,有(1+1)(1+推测 (1+1)(1+)(1+) (*)当n=1时,已验证(*)式成立 假设n=k(k1)时(*)式成立,即(1+1)(1+)(1+)则当n=k+1时, ,即当n=k+1时,(*)式成立由知,(*)式对任意正整数n都成立 于是,当a1时,Snlogabn+1,当 0a1时,Snlogabn+1【课外作业】 课标检测

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服