ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:386KB ,
资源ID:2938329      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2938329.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江苏省高考数学试卷答案与解析.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省高考数学试卷答案与解析.doc

1、2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1(5分)(2014江苏)已知集合A=2,1,3,4,B=1,2,3,则AB=1,3考点:交集及其运算菁优网版权所有专题:集合分析:根据集合的基本运算即可得到结论解答:解:A=2,1,3,4,B=1,2,3,AB=1,3,故答案为:1,3点评:本题主要考查集合的基本运算,比较基础2(5分)(2014江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21考点:复数的基本概念;复数代数形式的乘除运算菁优网版权所有专题:数系的扩充和复数分析:根据复数的有关概念,即可得到结论解答:解:z=(

2、5+2i)2=25+20i+4i2=254+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础3(5分)(2014江苏)如图是一个算法流程图,则输出的n的值是5考点:程序框图菁优网版权所有专题:算法和程序框图分析:算法的功能是求满足2n20的最小的正整数n的值,代入正整数n验证可得答案解答:解:由程序框图知:算法的功能是求满足2n20的最小的正整数n的值,24=1620,25=3220,输出n=5故答案为:5点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键4(5分)(2014江苏

3、)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是考点:古典概型及其概率计算公式菁优网版权所有专题:概率与统计分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=故答案为:点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本

4、事件5(5分)(2014江苏)已知函数y=cosx与y=sin(2x+)(0),它们的图象有一个横坐标为的交点,则的值是考点:三角方程;函数的零点菁优网版权所有专题:三角函数的求值;三角函数的图像与性质分析:由于函数y=cosx与y=sin(2x+),它们的图象有一个横坐标为的交点,可得=根据的范围和正弦函数的单调性即可得出解答:解:函数y=cosx与y=sin(2x+),它们的图象有一个横坐标为的交点,=0,+=,解得=故答案为:点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题6(5分)(2014江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm

5、),所得数据均在区间80,130上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm考点:频率分布直方图菁优网版权所有专题:概率与统计分析:根据频率=小矩形的面积=小矩形的高组距底部求出周长小于100cm的频率,再根据频数=样本容量频率求出底部周长小于100cm的频数解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)10=0.4,底部周长小于100cm的频数为600.4=24(株)故答案为:24点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高组距=7(5分)(2014江苏)在各项均为正数的

6、等比数列an中,若a2=1,a8=a6+2a4,则a6的值是4考点:等比数列的通项公式菁优网版权所有专题:等差数列与等比数列分析:利用等比数列的通项公式即可得出解答:解:设等比数列an的公比为q0,a10a8=a6+2a4,化为q4q22=0,解得q2=2a6=122=4故答案为:4点评:本题考查了等比数列的通项公式,属于基础题8(5分)(2014江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台)菁优网版权所有专题:立体几何分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,

7、然后求解体积的比解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;=,它们的侧面积相等,=故答案为:点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目9(5分)(2014江苏)在平面直角坐标系xOy中,直线x+2y3=0被圆(x2)2+(y+1)2=4截得的弦长为考点:直线与圆的位置关系菁优网版权所有专题:直线与圆分析:求出已知圆的圆心为C(2,1),半径r=2利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y3=0被圆截得的弦长解答:解:圆(x2)2+(y+1)2=4的圆心为C(2,1),半径r=2,点C到直线直线x+2y3=0的

8、距离d=,根据垂径定理,得直线x+2y3=0被圆(x2)2+(y+1)2=4截得的弦长为2=2=故答案为:点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题10(5分)(2014江苏)已知函数f(x)=x2+mx1,若对于任意xm,m+1,都有f(x)0成立,则实数m的取值范围是(,0)考点:二次函数的性质菁优网版权所有专题:函数的性质及应用分析:由条件利用二次函数的性质可得 ,由此求得m的范围解答:解:二次函数f(x)=x2+mx1的图象开口向上,对于任意xm,m+1,都有f(x)0成立,即 ,解得m0,故答案为:(

9、,0)点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题11(5分)(2014江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是3考点:利用导数研究曲线上某点切线方程菁优网版权所有专题:导数的概念及应用分析:由曲线y=ax2+(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=5,且y|x=2=,解方程可得答案解答:解:直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,5),且该曲线在点P处的切线与

10、直线7x+2y+3=0平行,y=2ax,解得:,故a+b=3,故答案为:3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=5,且y|x=2=,是解答的关键12(5分)(2014江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,=2,则的值是22考点:向量在几何中的应用;平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:由=3,可得=+,=,进而由AB=8,AD=5,=3,=2,构造方程,进而可得答案解答:解:=3,=+,=,又AB=8,AD=5,=(+)()=|2|2=2512=2,故=22,故答案为:22点评:本题考查的知识点是向

11、量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=,是解答的关键13(5分)(2014江苏)已知f(x)是定义在R上且周期为3的函数,当x0,3)时,f(x)=|x22x+|,若函数y=f(x)a在区间3,4上有10个零点(互不相同),则实数a的取值范围是(0,)考点:根的存在性及根的个数判断菁优网版权所有专题:函数的性质及应用分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可解答:解:f(x)是定义在R上且周期为3的函数,当x0,3)时,f(x)=|x22x+|,若函数y=f(x)a在区间3,4上有10个零点(互不相同),在同一坐标系中画出函数f

12、(x)与y=a的图象如图:由图象可知故答案为:(0,)点评:本题考查函数的图象以函数的零点的求法,数形结合的应用14(5分)(2014江苏)若ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是考点:余弦定理;正弦定理菁优网版权所有专题:三角函数的图像与性质;解三角形分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC=,当且仅当时,取等号,故cosC1,故cosC的最小值是故答案为:点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键二、解答题(本大题共6小题,共计90分)15

13、(14分)(2014江苏)已知(,),sin=(1)求sin(+)的值;(2)求cos(2)的值考点:两角和与差的正弦函数;两角和与差的余弦函数菁优网版权所有专题:三角函数的求值;三角函数的图像与性质分析:(1)通过已知条件求出cos,然后利用两角和的正弦函数求sin(+)的值;(2)求出cos2,然后利用两角差的余弦函数求cos(2)的值解答:解:(,),sin=cos=(1)sin(+)=sincos+cossin=;sin(+)的值为:(2)(,),sin=cos2=12sin2=,sin2=2sincos=cos(2)=coscos2+sinsin2=cos(2)的值为:点评:本题考查

14、两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力16(14分)(2014江苏)如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点,已知PAAC,PA=6,BC=8,DF=5求证:(1)直线PA平面DEF;(2)平面BDE平面ABC考点:平面与平面垂直的判定;直线与平面垂直的判定菁优网版权所有专题:空间位置关系与距离;空间角;立体几何分析:(1)由D、E为PC、AC的中点,得出DEPA,从而得出PA平面DEF;(2)要证平面BDE平面ABC,只需证DE平面ABC,即证DEEF,且DEAC即可解答:证明:(1)D、E为PC、AC的中点,DEPA,又PA平面DEF,DE

15、平面DEF,PA平面DEF;(2)D、E为PC、AC的中点,DE=PA=3;又E、F为AC、AB的中点,EF=BC=4;DE2+EF2=DF2,DEF=90,DEEF;DEPA,PAAC,DEAC;ACEF=E,DE平面ABC;DE平面BDE,平面BDE平面ABC点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目17(14分)(2014江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C(1

16、)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值考点:椭圆的简单性质;椭圆的标准方程菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值(2)求出C的坐标,利用F1CAB建立斜率之间的关系,解方程即可求出e的值解答:解:(1)C的坐标为(,),即,a2=()2=2,即b2=1,则椭圆的方程为+y2=1(2)设F1(c,0),F2(c,0),B(0,b),直线BF2:y=x+b,代入椭圆方程+=1(ab0)得()x2=0,解得x=0,或x=,A(,),且A,C关于x轴对称,C(,),则=,F1CAB,()

17、=1,由b2=a2c2得,即e=点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大18(16分)(2014江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tanBCO=(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?考点:圆的切线方程;直线与圆的位置关系菁优网版权所有专题:直线与

18、圆分析:(1)在四边形AOCB中,过B作BEOC于E,过A作AFBE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大解答:解:(1)如图,过B作BEOC于E,过A作AFBE于F,ABC=90,BEC=90,ABF=BCE,设AF=4x(m),则BF=3x(m)AOE=AFE=OEF=90,OE=AF=4x(m),EF=AO=60(m),B

19、E=(3x+60)m,CE=(m)(m),解得:x=20BE=120m,CE=90m,则BC=150m;(2)如图,设BC与M切于Q,延长QM、CO交于P,POM=PQC=90,PMO=BCO设OM=xm,则OP=m,PM=mPC=m,PQ=m设M半径为R,R=MQ=m=mA、O到M上任一点距离不少于80m,则RAM80,ROM80,136(60x)80,136x80解得:10x35当且仅当x=10时R取到最大值OM=10m时,保护区面积最大点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题19(16分)(2014江苏)已知函数f(x)=ex+ex,其中e是

20、自然对数的底数(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)ex+m1在(0,+)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x01,+),使得f(x0)a(x03+3x0)成立,试比较ea1与ae1的大小,并证明你的结论考点:利用导数求闭区间上函数的最值菁优网版权所有专题:导数的综合应用分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)ex+m1在(0,+)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论解答:解:(1

21、)f(x)=ex+ex,f(x)=ex+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)ex+m1在(0,+)上恒成立,即m(ex+ex1)ex1,x0,ex+ex10,即m在(0,+)上恒成立,设t=ex,(t1),则m在(1,+)上恒成立,=,当且仅当t=2时等号成立,m(3)令g(x)=ex+exa(x3+3x),则g(x)=exex+3a(x21),当x1,g(x)0,即函数g(x)在1,+)上单调递增,故此时g(x)的最小值g(1)=e+2a,由于存在x01,+),使得f(x0)a(x03+3x0)成立,故e+2a0,即a(e+),令h(x)=x(e1

22、)lnx1,则h(x)=1,由h(x)=1=0,解得x=e1,当0xe1时,h(x)0,此时函数单调递减,当xe1时,h(x)0,此时函数单调递增,h(x)在(0,+)上的最小值为h(e1),注意到h(1)=h(e)=0,当x(1,e1)(0,e1)时,h(e1)h(x)h(1)=0,当x(e1,e)(e1,+)时,h(x)h(e)=0,h(x)0,对任意的x(1,e)成立a(e+),e)(1,e)时,h(a)0,即a1(e1)lna,从而ea1ae1,当a=e时,ae1=ea1,当a(e,+)(e1,+)时,当ae1时,h(a)h(e)=0,即a1(e1)lna,从而ea1ae1点评:本题主

23、要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大20(16分)(2014江苏)设数列an的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称an是“H数列”(1)若数列an的前n项和为Sn=2n(nN*),证明:an是“H数列”;(2)设an是等差数列,其首项a1=1,公差d0,若an是“H数列”,求d的值;(3)证明:对任意的等差数列an,总存在两个“H数列”bn和cn,使得an=bn+cn(nN*)成立考点:数列的应用;等差数列的性质菁优网版权所有专题:等差数列与等比数列分析:(1)利用“当n2时,an=SnSn1,当n

24、=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出(2)利用等差数列的前n项和即可得出Sn,对nN*,mN*使Sn=am,取n=2和根据d0即可得出;(3)设an的公差为d,构造数列:bn=a1(n1)a1=(2n)a1,cn=(n1)(a1+d),可证明bn和cn是等差数列再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出解答:解:(1)当n2时,an=SnSn1=2n2n1=2n1,当n=1时,a1=S1=2当n=1时,S1=a1当n2时,Sn=an+1数列an是“H”数列(2)Sn=,对nN*,mN*使Sn=am,即,取n=2时,得1+d=(m1)d,解得,d0

25、,m2,又mN*,m=1,d=1(3)设an的公差为d,令bn=a1(n1)a1=(2n)a1,对nN*,bn+1bn=a1,cn=(n1)(a1+d),对nN*,cn+1cn=a1+d,则bn+cn=a1+(n1)d=an,且数列bn和cn是等差数列数列bn的前n项和Tn=,令Tn=(2m)a1,则当n=1时,m=1;当n=2时,m=1当n3时,由于n与n3的奇偶性不同,即n(n3)为非负偶数,mN*因此对nN*,都可找到mN*,使Tn=bm成立,即bn为H数列数列cn的前n项和Rn=,令cm=(m1)(a1+d)=Rn,则m=对nN*,n(n3)为非负偶数,mN*因此对nN*,都可找到mN

26、*,使Rn=cm成立,即cn为H数列因此命题得证点评:本题考查了利用“当n2时,an=SnSn1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21(10分)(2014江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:OCB=D考点:弦切角菁优网版权所有专题:直线与圆分析:利用OC=OB,

27、可得OCB=B,利用同弧所对的圆周角相等,即可得出结论解答:证明:OC=OB,OCB=B,B=D,OCB=D点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题【选修4-2:矩阵与变换】22(10分)(2014江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值考点:矩阵与向量乘法的意义菁优网版权所有专题:矩阵和变换分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值解答:解:矩阵A=,B=,向量=,A=B,x=,y=4,x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题【选修4-3:极坐标及参数方程】23(2

28、014江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长考点:直线的参数方程菁优网版权所有专题:计算题;坐标系和参数方程分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x210x+9=0,交点A(1,2),B(9,6),|AB|=8点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题【选修4-4:不等式选讲】24(2014江苏)已知x0,y0,证明(1+

29、x+y2)(1+x2+y)9xy考点:不等式的证明菁优网版权所有专题:证明题;不等式的解法及应用分析:由均值不等式可得1+x+y23,1+x2+y,两式相乘可得结论解答:证明:由均值不等式可得1+x+y23,1+x2+y分别当且仅当x=y2=1,x2=y=1时等号成立,两式相乘可得(1+x+y2)(1+x2+y)9xy点评:本题考查不等式的证明,正确运用均值不等式是关键(二)必做题(本部分包括25、26两题,每题10分,共计20分)25(10分)(2014江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率

30、P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X)考点:离散型随机变量的期望与方差;古典概型及其概率计算公式菁优网版权所有专题:概率与统计分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况取出的2个球颜色相同的概率P=(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=

31、3)=于是P(X=2)=1P(X=3)P(X=4)=,X的概率分布列为 X 2 3 4P故X数学期望E(X)=点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题26(10分)(2014江苏)已知函数f0(x)=(x0),设fn(x)为fn1(x)的导数,nN*(1)求2f1()+f2()的值;(2)证明:对任意nN*,等式|nfn1()+fn()|=都成立考点:三角函数中的恒等变换应用;导数的运算菁优网版权所有专题:函数的性质及应用;三角函数的求值分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后

32、根据条件两边再求导得:2f1(x)+xf2(x)=sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证解答:解:(1)f0(x)=,xf0(x)=sinx,则两边求导,xf0(x)=(sinx),fn(x)为fn1(x)的导数,nN*,f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2

33、(x)=sinx,将x=代入上式得,2f1()+f2()=1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=sinx=sin(x+),再对上式两边同时求导得,3f2(x)+xf3(x)=cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2),猜想得,nfn1(x)+xfn(x)=sin(x+)对任意nN*恒成立,下面用数学归纳法进行证明等式成立:当n=1时,成立,则上式成立;假设n=k(k1且kN*)时等式成立,即,kfk1(x)+xfk(x)=kfk1(x)+fk(x)+xfk(x)=(k+1)fk(x)+xfk+1(x)又=,那么n=k+1(k1且kN*)时等式也成立,由得,nfn1(x)+xfn(x)=sin(x+)对任意nN*恒成立,令x=代入上式得,nfn1()+fn()=sin(+)=cos=,所以,对任意nN*,等式|nfn1()+fn()|=都成立点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服