ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:497.50KB ,
资源ID:2907981      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2907981.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(行列式的计算-学位论文.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

行列式的计算-学位论文.doc

1、各专业完整优秀毕业论文设计图纸 行列式的计算 马志娥 (西北师范大学数学与统计学院, 甘肃, 兰州 , 730070) 摘要: 行列式是研究许多学科的重要工具,因此行列式的计算是大家共同关注的问题.本文介绍了几种特殊而且行之有效的行列式的计算方法. 关键词: 范德蒙行列式; 降阶法; 升阶法; 递推法; 数学归纳法; 代数余子式的计算; 拉普拉斯定理展开 符号说明: 表示第 行 表示第列 表示行列式元素的余子式 表示行列式元素的代数余子式

2、表示第 行的倍加到第行 表示第 列的倍加到第列 The Calculation of the Determinant MA Zhi-e (College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China) Abstract: The determinant is an important tool to study many disciplines, so the calculation of the determinant is a co

3、mmonly concerned problem. Several particular and effective methods of calculating the determinant are introduced in this paper. Key words: Vandermonde determinant; reducing order method; ascending order method; recursive methods; mathematical induction; calculation of algebraic complement; method o

4、f Laplace expansion; 引言 使用行列式按行(列)展开,可以将行列式写成低一阶的行列式的代数和,从而将行列式降一阶.但是,由于展开式是项代数和,因此计算量任很大,可以考虑一些减少计算量的方法,并且选择最佳计算方法.行列式是研究许多学科的重要工具,因此行列式的计算是大家共同关注的问题.课本中只介绍了几种计算方法,本文主要介绍几种特殊而且行之有效的行列式的计算方法,具有针对性. 一、化行列式为三角行列式 使用行列式的性质将行列式化为三角行列式 ㈠ 箭形行列式 例1.1 计算行列式 解 ㈡ 可化为箭形的行列式 例1.2 计算阶行列式 解

5、 ㈢ 行(列)和相等的行列式 例1.3 计算阶行列式 解 ㈣ 相邻行(列)元素差的行列式 以数字为(大部分)元素,且相邻两行(列)元素相差1的阶行列式可如下计算: 自第一行(列)开始,前行(列)减去后行(列),或自第行(列)开始,后行(列)减去前行(列),即可出现大量元素为或的行列式. 例1.4.1 计算阶行列式 解 由 例1.4.2 计算阶行列式 解 二、利用范德蒙行列式结果

6、计算 当行列式各行(列)都是某元素的不同次幂的形式,使用行列式的性质将行列式整理成范德蒙行列式. 例2 计算行列式 解 考虑阶范德蒙行列式 三、降阶法 使用行列式的性质将行列式的某行(列)化为只有一个非零元素,然后按这一行(列)展开,这样就可以将行列式降一阶,每展开一次,行列式的次数可以降低一阶,如此继续进行直到将行列式降到二阶行列式并求其值.这种方法对阶数不高的数字行列式比较适用. 例3 计算阶行列式 解 四、升阶法 升阶法(也称加边法或镶边法),是在原行列式的基础上增加一行一列(即升一阶)且保持原行列式不变的

7、情况下计算行列式的一种方法.可用升阶法计算的行列式一般应满足各行列含有共同元素的特点,且化简后常变成箭形行列式. 例4.1 计算阶行列式 解 例4.2 计算阶行列式 解 五、递推法 使用行列式的性质,将所求的阶行列式用同样形式的阶行列式表示出来,建立与之间的递推关系,有时还可以将用同样形式的比阶更低阶的行列式表示,建立他们之间的递推关系,从而找到递推公式,最终求出阶行列式的值. 例5.1 证明 证明

8、 例5.2 计算阶行列式 解 得, … ① … ② 联立①②得, , 六、数学归纳法 当已知一个阶行列式的结果,要证明其等式对于任意的自然数都成立,常使用数学归纳法证明.如果未知阶行列式的结果,也可以先计算当时的行列式值,推导出阶行列式的结果,然后使用数学归纳法证明结论的正确性.这种方法通常用在证明阶行列式的等于某个值的题目中. 例6 证明 证明

9、 综上可知, . 七、代数余子式的计算 例7 设阶行列式,求第一行各元素的代数余子式之和 解 显然第一行各元素的代数余子式之和可以表示成 八、利用拉普拉斯展开定理计算 拉普拉斯定理是行列式按一行或一列展开定理的推广.为了灵活应用拉普拉斯展开定理,必须正确理解其含义.该定理是说在阶行列式中任意选定个行(列)(且这个行(列)不一定相连),位于这行(列)中所有阶子式(共个)与其相应的代数余子式的乘积之和等于原行列式

10、即 需要提醒的是是的代数余子式,计算时不要遗漏其符号,即 在利用拉普拉斯定理进行计算时,为使计算简便,一般选含零多的个行(列)展开. 例8 利用拉普拉斯定理计算阶行列式 解 九、一题多解 例9 计算阶行列式 解法1 然后提取第一个公因子,可得, 解法2 解法3 解法4 参考文献 【1】徐仲.线性代数典型题分析解

11、集.2版.西北工业大学出版社,1997 【2】赵慧斌,高旅瑞.线性代数专题分析与解题指导.北京大学出版社,2007,8 【3】张天德,蒋晓芸.线性代数习题精选精解.山东科学技术出版社, 2009,12 【4】上海交通大学数学系编. 线性代数习题与精解.2版. 上海交通大学出版社, 2004,6 【5】刘书田,王中良编. 线性代数学习辅导与解题方法.高等教育出版社, 2003,7 【6】徐仲,陆全等.高等代数考研教案. 2版.西北工业大学出版社, 2009,6 【7】北京大学数学系几何与代数教研室前代数小组编.高等代数.第3版.高等教育出版社, 2003,2 【8】张禾瑞.高等代数同步辅导及习题全解.第5版.中国矿业大学出版社, 2009,2 16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服