ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:57KB ,
资源ID:2904052      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2904052.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(轴承机械类毕业设计外文翻译.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

轴承机械类毕业设计外文翻译.doc

1、轴承寿命分析摘 要自然界苛刻的工作条件会导致轴承的失效,但是假如遵循一些简朴的规则,轴承正常运转的机会是可以被提高的。在轴承的使用过程当中,过度的忽视会导致轴承的过热现象,也也许使轴承不可以再被使用,甚至完全的破坏。但是一个被损坏的轴承,会留下它为什么被损坏的线索。通过一些细致的观测工作,我们可以采用行动来避免轴承的再次失效。关键词:轴承 失效 寿命1 .轴承失效的因素轴承失效有以下多种因素,然而轴承的寿命实验却是所有机械实验中最故意义的。实验者必须控制实验过程以保证结果。其他的失效模式在Tallian19.2中有具体论述。下边几段就具体论述了可以影响寿命实验结果的几种失效模式。23章中,从E

2、HL的观点讨论了润滑条件对寿命实验结果的影响,同时尚有其他的润滑条件会影响实验的结论,一方面是润滑剂的接触面积,受到轴承的尺寸,转速,润滑剂的流动性等因素的影响,润滑剂在轴承表面形成的润滑层的厚度一般小于0.050.5um,大于这个薄层厚度的固体微粒会残留在接触面上,从而划伤润滑沟道和轴承的滚动面。从而大大缩短轴承的耐用性。关于这点Sayles和MacPherson以及其别人都有具体的论证。因此,为了保证实验结果我们必须选用合适等级的润滑剂。润滑剂的选择由工况决定,实验时也如此。假如工况选择的范围不拟定,就必须考虑到接触面积对实验结果的影响。23章中讨论了不同的接触面积对轴承失效寿命实验结果的

3、影响。潮气是影响润滑结果的另一个重要因素,长时间在水中和油中被腐蚀不仅对外观质量有影响,还会影响到滚动表面的轴承寿命。关于这点Fitch等人19.7有过论证。并且,即使是仅有50100PPM(百万分之一)的水汽含量也会产生有害影响,甚至产生表面看不出痕迹的腐蚀。这是由于轴承的沟道和滚动面之间会产生氢脆现象,从23章中也可以看出在润滑实验中湿气是如此重要的一个因素。因此在轴承寿命的实验结果中必须考虑到潮气的影响。为了减少对寿命减少的影响,潮气的含量最多不能超过40PPM。润滑剂的化学成分也是需要考虑的。大多数商业润滑油包含许多为特定目的而开发的专有添加剂。例如,为了提高抗磨损性能,为了能达成极限

4、压力,或者耐热性,还可以在边际润滑油膜的情况下提供边界润滑还能为边界润滑提供一个边界润滑层。这些添加剂同时也能即时的或者逐渐地影响滚动轴承的耐用性。为了避免添加剂成为加速寿命实验的条件,我们必须小心以保证测试润滑剂的添加剂不会受到恶化。为了保证同组产品寿命实验的结果有连贯性,最佳在整个寿命实验中都用同一供应商的标准润滑剂。为了得到一个合理的结果,记录学规定做很多组寿命实验。因此一个轴承的寿命实验需很长的时间。实验人员必须保证整个实验过程的连续性,由于任何微小的变化都会影响实验结果,因此这个过程是很复杂的。甚至这些微小的变化在导致重大变化之前都不会被注意到。一旦发生这样的情况,就没机会补救了。只

5、能在更好的控制条件下重新做实验。比如说:添加剂的稳定性会影响到整个实验的条件。现在已经知道了一些添加剂在长期使用时会导致大量的额外损耗。这些易退化的添加剂会影响轴承表面的润滑条件,从而影响轴承的寿命。一般的对润滑剂做化学检测时是不会检测添加剂的成分的。因此,假如一种润滑剂用于长时间的轴承寿命实验的话,生产者应当定期更换实验的样品,比如一年一次。用来具体评估润滑剂的使用规定。实验时还要控制的是适当的温度。润滑层(油膜)的厚度对温度的影响是相称敏感的,大多数装机实验是在标准的工业环境下进行的,在这一年实验时间中环境温度变化是非常大的。同时,个别轴承受温度变化的影响是会影响到整个系统的常规的制造公差

6、的。因此,所有轴承受温度变化的影响会直接影响到寿命实验数据的准确性。因此为了保证实验数据的连贯性,必须监控并实时调节每个轴承的使用温度。因此对于轴承寿命实验时3C的温度公差被认为是可接受的。用于轴承寿命实验的硬件装备的磨损是另一个需要监控的恒量。用于重载实验的轴和轴承的内圈都会受到很大的载荷。反复拆装轴承会对轴的表面产生损害。这样的改变会影响几何形状的。轴外径和轴承内径都会受腐蚀的影响。腐蚀是由于震动产生的微粒被氧化而产生的。这样也会减少轴承寿命实验的时间。同时这样的机构也会在装配面上产生重大的几何形变,从而影响轴承内径,最终成为减少寿命的重要因素。轴承缺陷的检测也是寿命实验的重要考察因素。轴

7、承缺陷最早是由原材料上的微小裂纹引起的。这样的缺陷在实验中是没法检测的。为了检测这个缺陷就需要使这个缺陷递增到能影响轴承参数的数量级别。比如说噪音,温度,震动等缺陷。可以在系统中应用这些技术方法来检查缺陷。而具有这样能力的系统可以从初期就检测出在多样化工作条件复杂系统中用来测试用的缺陷轴承。而当前还没有一个单一的系统能检测出所有的轴承缺陷。因此将来有必要选择一种能在轴承受到微小的伤害之前就停下机器的监控系统。缺陷递增的速率是相称重要的。假如在实验结束时缺陷的限度和理论计算出的是一致的,唯一的区别就是实验中对缺陷的检测总是落后于理论计算的。标准的轴承钢在耐久性实验中缺陷的递增速度是相称快的。并且

8、这个递增还不是重要因素,考虑到有代表性的耐久性实验的数据都是经记录学分析后得到的。有的也不一定,比如一些表面硬度不同的钢材或是专为实验用生产的钢材。因此在分析结果的时候就必须考虑是标准的轴承钢还是专门的实验用钢材。耐久性实验最后结果的有效性是由元素-金相分析验证的。轴承会通过高倍光学显微镜,高倍电子扫描显微镜,高倍电子显微镜,化学元素分析等多种方法来分析。生产时出现的会导致缺陷的元素以及残留在表面发生化学变化以后会导致缺陷的元素(如S,P等有害元素)等都会影响轴承的寿命。这些检查方法都是用来保证实验得出的数据是真实有效的。Tallian将所有轴承失效的黑白图片汇编起来【19.8】,可认为判断各

9、种类型的失效提供依据。现在Tallian已经将其更新为【19.9】,其中加入了彩色图片。元素-金相实验可以提供一个精确的证据,使实验结果处在可控制情况下,同时检测有疑点和争议的地方。当轴承从实验机上取下来的时候可以现做一个初步的研究,将会在30倍显微镜下观测失效的部分。而正常的显微图片请看19.219.6中的图片。、图19.2是球轴承沟道的表面失效图片。图19.3是滚子轴承沟道由于未校准而导致表面开裂的图片。图19.4是一个球轴承由于外圈表面锈蚀而导致外圈开裂的图片。图19.5是表面凹陷残骸的具体图片。图19.6是一个由于热变形导致的内圈游隙变化的图片。最后的4张图片不是用对的的实验方法得到的

10、有效的失效模式。然而,这些错误的数据需要从有效的失效数据中剔除掉,从而得到能对的评估寿命实验的有效数据。2 .避免失效的方法解决轴承失效问题的最佳办法就是避免失效发生。这可以在选用过程中通过考虑关键性能特性来实现。这些特性涉及噪声、起动和运转扭矩、刚性、非反复性振摆以及径向和轴向间隙。扭矩规定是由润滑剂、保持架、轴承圈质量(弯曲部分的圆度和表面加工质量)以及是否使用密封或遮护装置来决定。润滑剂的粘度必须认真加以选择,由于不适宜的润滑剂会产生过大的扭矩,这在小型轴承中特别如此。此外,不同的润滑剂的噪声特性也不同样。举例来说,润滑脂产生的噪声比润滑油大一些。因此,要根据不同的用途来选用润滑剂。在轴

11、承转动过程中,假如内圈和外圈之间存在一个随机的偏心距,就会产生与凸轮运动非常相似的非反复性振摆(NRR)。保持架的尺寸误差和轴承圈与滚珠的偏心都会引起NRR。和反复性振摆不同的是,NRR是没有办法进行补偿的。在工业中一般是根据具体的应用来选择不同类型和精度等级的轴承。例如,当规定振摆最小时,轴承的非反复性振摆不能超过0.3微米。同样,机床主轴只能允许最小的振摆,以保证切削精度。因此在机床的应用中应当使用非反复性振摆较小的轴承。在许多工业产品中,污染是不可避免的,因此常用密封或遮护装置来保护轴承,使其免受灰尘或脏物的侵蚀。但是,由于轴承内外圈的运动,使轴承的密封不也许达成完美的限度,因此润滑油的

12、泄漏和污染始终是一个未能解决的问题。一旦轴承受到污染,润滑剂就要变质,运营噪声也随之变大。假如轴承过热,它将会卡住。当污染物处在滚珠和轴承圈之间时,其作用和金属表面之间的磨粒同样,会使轴承磨损。采用密封和遮护装置来挡开脏物是控制污染的一种方法。噪声是反映轴承质量的一个指标。轴承的性能可以用不同的噪声等级来表达。噪声的分析是用安德逊计进行的,该仪器在轴承生产中可用来控制质量,也可对失效的轴承进行分析。将一传感器连接在轴承外圈上,而内圈在心轴以1800r/min的转速旋转。测量噪声的单位为anderons。即用um/rad表达的轴承位移。根据经验,观测者可以根据声音辨别出微小的缺陷。例如,灰尘产生

13、的是不规则的噼啪声;滚珠划痕产生一种连续的爆破声,拟定这种划痕最困难;内圈损伤通常产生连续的高频噪声,而外圈损伤则产生一种间歇的声音。轴承缺陷可以通过其频率特性进一步加以鉴定。通常轴承缺陷被分为低、中、高三个波段。缺陷还可以根据轴承每转动一周出现的不规则变化的次数加以鉴定。低频噪声是长波段不规则变化的结果。轴承每转一周这种不规则变化可出现1.610次,它们是由各种干涉(例如轴承圈滚道上的凹坑)引起的。可察觉的凹坑是一种制造缺陷,它是在制造过程中由于多爪卡盘夹的太紧而形成的。中频噪声的特性是轴承每旋转一周不规则变化出现1060次。这种缺陷是由在轴承圈和滚珠的磨削加工中出现的振动引起的。轴承每旋转

14、一周高频不规则变化出现60300次,它表白轴承上存在着密集的振痕或大面积的粗糙不平。运用轴承的噪声特性对轴承进行分类,用户除了可以拟定大多数厂商所使用的ABEC标准外,还可拟定轴承的噪声等级。ABEC标准只定义了诸如孔、外径、振摆等尺寸公差。随着ABEC级别的增长(从3增到9),公差逐渐变小。但ABEC等级并不能反映其他轴承特性,如轴承圈质量、粗糙度、噪声等。因此,噪声等级的划分有助于工业标准的改善。BEARING LIFE ANALYSISProceedings of the Ninth International Symposium on Magnetic Bearings. Kentuc

15、ky. USA. 2023,(August):3-61 .WHY BEARINGS FAILAn individual bearing may fail for several reasons; however, the results of an endurance test series are only meaningful when the test bearings fail by fatigue-related mechanisms. The experimenter must control the test process to ensure that this occurs.

16、 Some of the other failure modes that can be experienced are discussed in detail by Tallian 19.2. The following paragraphs deal with a few specific failure types that can affect the conduct of a life test sequence.In Chapter 23, the influence of lubrication on contact fatigue life is discussed from

17、the standpoint of EHL film generation. There are also other lubrication-related effects that can affect the outcome of the test series. The first is particulate contaminants in the lubricant. Depending on bearing size, operating speed, and lubricant rheology, the overall thickness of the lubricant f

18、ilm developed at the rolling element-raceway contacts may fall between 0.05 and 0.5 m . Solid particles and damage the raceway and rolling element surfaces, leading to substantially shortened endurances. This has been amply demonstrated by and and others.Therefore, filtration of the lubricant to the

19、 desired level is necessary to ensure meaningful test result. The desired level is determined by the application which the testing purports to approximate. If this degree of filtration is not provided, effects of contamination must be considered when evaluating test results. Chapter 23 discusses the

20、 effect of various degrees of particulate contamination, and hence filtration, on bearing fatigue life. The moisture content in the lubricant is another important consideration. It has long been apparent that quantities of free water in the oil cause corrosion of the rolling contact surfaces and thu

21、s have a detrimental effect on bearing life. It has been further shown by Fitch 19.7 and others, however, that water levels as low as 50-100 parts per million(ppm) may also have a detrimental effect, even with no evidence of corrosion. This is due to hydrogen embrittlement of the rolling element and

22、 raceway material. See also Chapter 23. Moisture control in test lubrication systems is thus a major concern, and the effect of moisture needs to be considered during the evaluation of life test results. A maximum of 40 ppm is considered necessary to minimize life reduction effects.The chemical comp

23、osition of the test lubricant also requires consideration. Most commercial lubricants contain a number of proprietary additives developed for specific purposes; for example, to provide antiwear properties, to achieve extreme pressure and/or thermal stability, and to provide boundary lubrication in c

24、ase of marginal lubricant films. These additives can also affect the endurance of rolling bearings, either immediately or after experiencing time-related degradation. Care must be taken to ensure that the additives included in the test lubricant will not suffer excessive deterioration as a result of

25、 accelerated life test conditions. Also for consistency of results and comparing life test groups, it is good practice to utilize one standard test lubricant from a particular producer for the conduct of all general life tests.The statistical nature of rolling contact fatigue requires many test samp

26、les to obtain a reasonable estimate of life. A bearing life test sequence thus needs a long time. A major job of the experimentalist is to ensure the consistency of the applied test conditions throughout the entire test period. This process is not simple because subtle changes can occur during the t

27、est period. Such changes might be overlooked until their effects become major. At that time it is often too late to salvage the collected data, and the test must be redone under better controls.For example, the stability of the additive packages in a test lubricant can be a source of changing test c

28、onditions. Some lubricants have been known to suffer additive depletion after an extended period of operation. The degradation of the additive package can alter the EHL conditions in the rolling content, altering bearing life. Generally, the normal chemical tests used to evaluate lubricants do not d

29、etermine the conditions of the additive content. Therefore if a lubricant is used for endurance testing over a long time, a sample of the fluid should be returned to the producer at regular intervals, say annually, for a detailed evaluation of its condition.Adequate temperature controls must also be

30、 employed during the test. The thickness of the EHL film is sensitive to the contact temperature. Most test machines are located in standard industrial environments where rather wide fluctuations in ambient temperature are experienced over a period of a year. In addition, the heat generation rates o

31、f individual bearings can vary as a result of the combined effects of normal manufacturing tolerances. Both of these conditions produce variations in operating temperature levels in a lot of bearings and affect the validity of the life data. A means must be provided to monitor and control the operat

32、ing temperature level of each bearing to achieve a degree of consistency. A tolerance level of3C is normally considered adequate for the endurance test process.The deterioration of the condition of the mounting hardware used with the bearings is another area requiring constant monitoring. The heavy

33、loads used for life testing require heavy interference fits between the bearing inner rings and shafts. Repeated mounting and dismounting of bearings can produce damage to the shaft surface, which in turn can alter the geometry of a mounted ring. The shaft surface and the bore of the housing are als

34、o subject to deterioration from fretting corrosion. Fretting corrosion results from the oxidation of the fine wear particles generated by the vibratory abrasion of the surface, which is accelerated by the heavy endurance test loading. This mechanism can also produce significant variations in the geo

35、metry of the mounting surfaces, which can alter the internal bearing geometry. Such changes can have a major effect in reducing bearing test life.The detection of bearing failure is also a major consideration in a life test series. The fatigue theory considers failure as the initiation of the first

36、crack in the bulk material. Obviously there is no way to detect this occurrence in practice. To be detectable the crack must propagate to the surface and produce a spall of sufficient magnitude to produce a marked effect on an operating parameter of the bearing: for example, noise, vibration, and/or

37、 temperature. Techniques exit for detecting failures in application systems. The ability of these systems to detect early signs of failure varies with the complexity of the test system, the type of bearing under evaluation, and other test conditions. Currently no single system exists that can consis

38、tently provide the failure discrimination necessary for all types of bearing life tests. It is then necessary to select a system that will repeatedly terminate machine operation with a consistent minimal degree of damage.The rate of failure propagation is therefore important. If the degree of damage

39、 at test termination is consistent among test elements, the only variation between the experimental and theoretical lives is the lag in failure detection. In standard through-hardened bearing steels the failure propagation rate is quite rapid under endurance test conditions, and this is not a major

40、factor, considering the typical dispersion of endurance test data and the degree of confidence obtained from statistical analysis. This may not, however, be the case with other experimental materials or with surface-hardened steels or steels produced by experimental techniques. Care must be used whe

41、n evaluating these latter results and particularly when comparing the experimental lives with those obtained from standard steel lots.The ultimate means of ensuring that an endurance test series was adequately controlled is the conduct of a post-test analysis. This detailed examination of all the te

42、sted bearings uses high-magnification optical inspection, higher-magnification scanning electron microscopy, metallurgical and dimensional examinations, and chemical evaluations as required. The characteristics of the failures are examined to establish their origins and the residual surface conditio

43、ns are evaluated for indications of extraneous effects that may have influenced the bearing life. This technique allows the experimenter to ensure that the data are indeed valid. The “Damage Atlas” compiled by Tallian et al. 19.8 containing numerous black and white photographs of the various bearing

44、 failure modes can provide guidance for these types of determinations. This work was subsequently updated by Tallian 19.9, now including color photographs as well. The post-test analysis is, by definition, after the fact. To provide control throughout the test series and to eliminate all questionabl

45、e areas, the experimenter should conduct a preliminary study whenever a bearing is removed from the test machine. In this portion of the investigation each bearing is examined optically at magnifications up to 30 for indications of improper or out-of-control test parameters. Examples of the types of

46、 indications that can be observed are given in Figs. 19.2-19.6.Figure 19.2 illustrates the appearance of a typical fatigue-originated spall on a ball bearing raceway. Figure 19.3 contains a spalling failure on the raceway of a roller bearing that resulted from bearing misalignment, and Fig. 19.4 con

47、tains a spalling failure on the outer ring of a ball bearing produced by fretting corrosion on the outer diameter. Figure 19.5 illustrates a more subtle form of test alteration, where the spalling failure originated from the presence of a debris dent on the surface. Figure 19.6 gives an example of a

48、 totally different failure mode produced by the loss of internal bearing clearance due to thermal unbalance of the system.The last four failures are not valid fatigue spalls and indicate the need to correct the test methods. Furthermore, these data points would need to be eliminated from the failure

49、 data to obtain a valid estimate of the experimental bearing life.2 .AVOIDING FAILURESThe best way to handle bearing failures is to avoid themThis can be done in the selection process by recognizing critical performance characteristicsThese include noise,starting and running torque,stiffness,non-repetitive run out,and radial and axial playIn some applications, these items are so critical that specifying an ABEC le

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服