ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:14.83MB ,
资源ID:2901975      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2901975.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池.pdf

1、Cite this:NewCarbonMaterials,2024,39(1):131-141DOI:10.1016/S1872-5805(24)60837-1Bismuth nanoparticles anchored on N-doped graphite felts to givestable and efficient iron-chromium redox flow batteriesCHEHang-xin1,GAOYu-fei2,YANGJia-hui1,HONGSong1,*,HAOLei-duan1,XULiang1,SanaTaimoor1,AlexW.Robertson3,

2、SUNZhen-yu1,*(1.State Key Laboratory of Organic-Inorganic Composites,College of Chemical Engineering,Beijing Universityof Chemical Technology,Beijing 100029,China;2.School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004,China;3.Department of Physics,

3、University of Warwick,Coventry CV4 7AL,UK)Abstract:Iron-chromiumredoxflowbatteries(ICRFBs)useabundantandinexpensivechromiumandironastheactivesub-stancesintheelectrolyteandhavegreatpotentialasacost-effectiveandlarge-scaleenergystoragesystem.However,theyarestillplaguedbyseveralissues,suchasthelowelect

4、rochemicalactivityofCr3+/Cr2+andtheoccurrenceoftheundesiredhydrogenevolu-tionreaction(HER).Wereportthesynthesisofamorphousbismuth(Bi)nanoparticles(NPs)immobilizedonN-dopedgraphitefelts(GFs)byacombinedself-polymerizationandwet-chemistryreductionstrategyfollowedbyannealing,whichareusedasthenegat-iveel

5、ectrodesforICRFBs.TheresultingBiNPsreactwithH+toformintermediatesandgreatlyinhibittheparasiticHER.Inaddi-tion,thecombinedeffectofBiandNdopantsonthesurfaceofGFdramaticallyincreasestheelectrochemicalactivityofFe2+/Fe3+andCr3+/Cr2+,reducesthechargetransferresistance,andincreasesthemasstransferratecompa

6、redtoplainGF.AttheoptimumBi/Nratioof2,ahighcoulombicefficiencyofupto97.7%ismaintainedevenfor25cyclesatdifferentcurrentdensities,theenergyeffi-ciencyreaches85.8%at60.0mAcm2,exceedingmanyotherreportedmaterials,andthecapacityreaches862.7mAhL1after100cycles,whichisabout5.3timesthatofbareGF.Key words:Iro

7、n-chromiumflowbattery;Bi;Negativeelectrode;Nitrogendoping;Graphitefelt1IntroductionThe development of clean energy sources is acurrent international priority.Renewable powersbasedonwindandsolargenerationarenowbecom-ingprimaryenergysourcesforpoweringoursocieties.However,theinherentintermittencyofrene

8、wableen-ergysourcesbringsaboutseriouschallengesforen-suringaconsistentsupplyofpowertothegrid.En-ergystoragetechnologyisaneffectivetoolforachiev-ingefficientrenewableenergyutilizationandstablepowersystemoperation12.Comparedwithphysicalenergy storage technology such as pumped storage,chemical energy s

9、torage technology offers greaterflexibilityintermsofscaleandlocation.Amongthevariouschemicalenergystoragemethods,redoxflowbatteries(RFBs)have become a large-scale batteryenergystoragetechnologywithgreatpotentialowingtotheirlonglife,goodsafety,andhighenergyeffi-ciency3.RFBsareconsideredasoneofthebest

10、choicesfor megawatt-level power storage,and megawattdemonstrationsystems have been installed,for ex-ample,inChina,theUnitedStatesandAustralia.ThechargeanddischargeoftheRFBsarerealizedmainlybythe change in the redox state of the active sub-stanceinthesolutiononbothsidesofthepositiveandnegativeelectro

11、des.An RFB consists of two elec-trodes,two electrolyte tanks,and an ion exchangemembrane.Theelectrolyteisusuallystoredinanex-ternaltankandpumpedintothereactor.Theredoxre-actioniscarriedoutontheelectrodesurface,andtheactivesubstanceafterthereactionflowsbacktotheReceived date:2023-10-27;Revised date:2

12、023-12-22Corresponding author:HONGSong,AssociateProfessor.E-mail:;SUNZhen-yu,Professor.E-mail:Author introduction:CHEHang-xin,Masterstudent.E-mail:Supplementarydataassociatedwiththisarticlecanbefoundintheonlineversion.Homepage:http:/ variety of RFBs have been developed,in-cludingall-vanadium flow ba

13、tteries(VRFBs),vana-dium-ironRFBs,zinc-bromineRFBs,andiron-chro-miumflowbatteries(ICRFBs)5.Amongthem,ICRF-Bsarethefirstrealsenseofflowbatteryinhistory.Itusescheapandabundantchromiumandironastheactivesubstancesintheelectrolyteandisthereforeavery cost-effective energy storage system comparedwithotherk

14、indsofflowbatteries6.However,practical implementation of ICRFBsmustaddresstheproblemsofslowCr3+/Cr2+kineticsandsuppressthecompetingHER.Graphitefelt(GF)istypicallythefirstchoiceofICRFBelectrodemateri-alsowingtoitsfavorableconductivity,stability,highspecificsurface area,porosity,and corrosion resist-a

15、nce79.However,GF also has drawbacks such aspoorhydrophilicity,insufficientelectrochemicalactivity,and low reversibility.The surfaces of GFelectrodeshavebeenmodifiedinanattempttocir-cumvent these issues and thus improve the ICRFBperformance.Forexample,indiumions10havebeendemonstrated to inhibit the H

16、ER and accelerateCr3+/Cr2+kinetics.ByloadingasmallamountofPb(100-200 g cm2)and Au(12-25 g cm2)ontoGF11,thekineticsoftheCr3+/Cr2+redoxreactionhasbeen promoted1213.Alternatively,Bi5,14,Tl15,SiO216,CoO1718,andothermodifiedelectrodeshavealsobeenutilizedtoacceleratetheCr3+/Cr2+redoxre-actions.Here,weprop

17、oseasynthesismethodforthepre-parationofBinanoparticles(NPs)immobilizedonN-dopedgraphitefelt(Bi/N-GF)byacombinedinterfa-cial copolymerization and wet-chemistry reductionapproachfollowedbyannealing,whichispromisingasanefficientnegativeelectrodeforICRFBs.As-ob-tainedcatalystsignificantlypromotesthereac

18、tivityofCr3+/Cr2+electrodes,improvesmasstransferkinetics,andalleviatestheHERoftheanode.Duringgalvano-staticchargeanddischarge,theBi/N-GFexhibitsex-cellentrateperformanceandlongstabilityduringcyc-ling.TheCoulombicefficiency(CE)ismaintainedat97.7%after25cyclesatvariouscurrentdensities.At60.0mAcm2,thee

19、nergyefficiency(EE)approaches85.8%.Thecapacityreaches862.7mAhL1after100cycles,whichisabout5.3timesthatofplainGF.2Experimental 2.1 Materials and preparationFeCl24H2O,CrCl36H2O and Bi(NO3)35H2OwerepurchasedfromMacklin.HClwasboughtfromBeijingTongGuangFineChemicalsCompany.Trisanddopamine(DA)hydrochlorid

20、ewereprovidedbyShanghaiAladdin Biochemical Technology.Deion-izedwater(18.2Mcm)wasobtainedfromaMilli-pore system.N2 gas(99.999%purity)was boughtfromBeijingHaipuGasCo.,Ltd.Graphitefelts(GFs)were bought from Liaoning Jin Gu carbon materialCo.LTD,China.Single cells were provided byWuhanZhishengNewEnergy

21、Co.,LTD.LinesandperistalticpumpswerepurchasedfromBaodingRiverFluidTechnologyCo.,LTD.Theelectrolyteof1molL1Fe/Cr(containing1molL1FeCl24H2Oand1molL1CrCl36H2O)+3 mol L1 HCl was prepared by dissolvingFeCl24H2O and CrCl36H2O in a concentrated HClsolution,andthendilutedquantitativelywithdeoxid-izedwaterat

22、roomtemperature.Deoxygenatedwaterwaspreparedbygraduallyheatingupdeionizedwaterto80C,thenintroducedintothesolutionwithava-cuum pump.The internal pressure increased,withsteady oxygen bubble formation observed until itceased,yielding deoxygenated water.The preparedelectrolyte was left for 3 h before el

23、ectrochemicaltests.Graphitefelts(3cm3cm)werecleanedandcalcinedinairat500Cfor5h19.100mgdopaminehydrochloridesolutionwasdissolvedinaTrisHClbuffersolution(10mmolL1Tris,pH=8.5),andthepre-treatedGFwasaddedandstirredfor1hatroomtemperature.Then 200 mg Bi(NO3)35H2Owas dis-solvedin50mLglycolsolution,andthena

24、ddedtotheabovesolutionandstirredatroomtemperaturefor7h.Finally,thepreparedsamplesweredriedinanovenat60C for 24 h.The resulting samples were sub-sequentlycalcinedat450Cfor1handfurtherat132新型炭材料(中英文)第39卷700Cfor2h1920inaquartzfurnaceunderN2atmo-sphere.As a consequence,Bi/N-GF was obtai-ned,asillustrate

25、dinFig.1.TheloadedBiinBi/N-GFwasestimatedtobeabout10.1%basedonenergy-dis-persiveX-rayspectroscopy(EDS)measurementsdur-ingtransmissionelectronmicroscopy(TEM)observa-tion.Byreplacingglycolwithdistilledwaterwhilere-maining the other conditions unchanged,bigger Binanoparticles supported on N-doped GF(na

26、med asBi_bigger/N-GF)were obtained.The number Bi/N-GF-0.5,Bi/N-GF-1andBi/N-GF-2referstoatheoret-icalcontentofBi/N.ForthefabricationofBi-GF,200mgBi(NO3)35H2Owasdissolvedin50mLglycolsolu-tionandthepre-treatedGFwasaddedandstirredfor8 h.The subsequent drying and thermal treatmentstepswerethesameasthoseu

27、sedforthepreparationofBi/N-GF.ForthepreparationofN-GF,100mgdopaminehydrochloride solution was dissolved in a Tris-HClbuffersolution(10mmolL1Tris,pH=8.5),andthepre-treatedGFwasaddedandstirredfor8hatroomtemperature.Thesubsequentdryingandthermaltreat-mentstepswerethesameasthoseusedfortheprepar-ationofB

28、i/N-GF.2.2 CharacterizationScanningelectron microscopy(SEM)was per-formedonanS-4800microscopewitha3kVacceler-ating voltage.TEM and aberration corrected high-angle annular dark-field scanning TEM(HAADF-STEM)weredonewithaJEOLARM200microscopewitha200kVacceleratingvoltage.STEMsampleswerepreparedbydeposi

29、tingadropletofsuspensionontoaCugridcoatedwithalaceycarbonfilm.X-raydiffraction(XRD)patterns were recorded on aD/MAX-RC diffractometer operated at 30 kV and100mAwithCuKradiation(=0.15418nm)atascanningrateof5min1.X-rayphotoelectronspec-troscopy(XPS)measurementswerecarriedoutusinga Thermo Scientific ES

30、CALAB 250Xi instrument.Theinstrumentwasequippedwithanelectronfloodandascanningiongun.Nospecialtreatmentwasap-pliedtothesamplesbeforeXPSanalysis.TheCCbindingenergyof284.8eVwasusedforinternalcal-ibration.PeakdeconvolutionwasperformedwiththeAvantagesoftware.2.3 Electrochemical measurementCyclic voltamm

31、etry(CV)and electrochemicalimpedancespectroscopy(EIS)weretestedat65.0Cusingathree-electrodesystemconsistingofagraph-iteworkingelectrode(6.0mmindiameter),asatur-atedcalomelreferenceelectrode(SCE),andaplatin-umnetwork(1cm2)counterelectrodeonaCHI660electrochemicalworkstation(ShanghaiChenHuaIn-strumentC

32、o.,LTD).Thevolumeofelectrolytethatwasusedduringthetestswas20mL.CVmeasure-mentswithdifferentsweeprateswereperformedinthepotentialrangesfrom0.8to0.8V.EISwascon-ductedunderadirectcurrentvoltagerangeof0.5Vand 0.35 V,a frequency range of 100 kHz and10MHz,andanamplitudeof5mV.Thetestresultswerefittedwithth

33、eZviewsoftware.2.4 Flow battery testAs-obtainedBi/N-GF(diameter:3cm3cm)andNafion117wereusedastheanodeandcationex-change membranes,respectively.1 mol L1 FeCl24H2O and 1 mol L1 CrCl36H2O dissolved in a3molL1HClsolutionswereutilizedastheanalyteandcatholyte,respectively.Toeliminateanyresidualair,thestor

34、agetanklinkedtothecellwaspurgedwithN2for30minandwassubsequentlyheatedinawaterbathto653C.TheelectrolytewasintroducedintoPolymerizationHeat treatmentBi NPsN-doped GF3-HydroxytyraminehydrochlorideBi3+pH=8.5Graphite felt450 oC 1 hand 700 oC 2 hHOHOHCINH2Fig.1AschematicillustrationofthesynthesisofBi/N-GF

35、第1期CHEHang-xinetal:BismuthnanoparticlesanchoredonN-dopedgraphitefeltstogivestableand133asingularcellataflowrateof120.0mLmin1.AllvoltagemeasurementswereversusSCEunlessother-wisestated.Electrochemicaltestswereconductedus-ingapotentiostat/currentmeter,withacut-offvoltageof0.8Vforthechargetestand1.2Vfor

36、thedis-chargetest.TheCEwascalculatedbytheratioofthenumber of electrons transferred during discharge tothenumberofelectronstransferredduringcharge.Intheprocessofchargeanddischarge,thecrosscontam-inationofpositiveandnegativeelectrolytesnormallyleadstolowcoulombicefficiency.Voltageefficiency(VE)was det

37、ermined by the ratio of average dis-chargevoltagetoaveragechargevoltage.EEwases-timatedbytheratiooftheoutputenergyofthedis-chargeprocesstothestoredenergyofthechargepro-cess.3ResultsanddiscussionTofabricateBi/N-GF,GFwasfirstcoatedwithpolydopamine(PDA)fromtheself-polymerizationofoxidizedDA.Thenitrogen

38、-enrichedlayerfacilitatedthedepositionofBiNPsresultingfromglycolreduc-tionatelevatedtemperature.Afterfurtherheattreat-ment,BiNPsadheredtothesurfaceofN-dopedGFwere attained.The morphologies of GF,N-GF,Bi-GF,andBi/N-GF(theBi/Nmassratiois2.0unlessstated otherwise)were characterized by SEM(Fig.S1ad).Atl

39、owmagnifications,alargenumberofin-terconnectedone-dimensionalfiberswereobservedinallcases.IncontrasttotherelativelysmoothsurfaceofbareGF,N-GFandBi-GFsamples,theoutersur-face of Bi/N-GF was seen to be densely depositedwithaggregates.ThisindicatesthattheintroductionofadditionalNspeciesinGFfavorstheanc

40、horingofBiparticlesonthesurfaceofGF.ThemicrostructureoftheresultingBi/N-GFwasfurtherinvestigatedby(S)TEM.Itisapparentthatalmostallgraphitefelts(ex-istingasgraphiteflakes)weredecoratedwithBiNPswithanirregularshape(Fig.2a,b).TheaveragesizeofBiNPswasestimatedtobeabout25nm.Inaddi-tiontosomebigaggregates

41、,ahighproportionofNPsoflessthan15nmwereidentified(Fig.2c,d).Theseformed NPs lack crystallinity,as confirmed by fastFouriertransform(FFT)(Fig.2e).TheformationofBiandNspeciesonGFwasvalidatedbytheSTEMimages and corresponding EDS elemental maps(a)(b)(c)(d)(e)(f)(g)(h)(i)C KBi MN KFig.2STEMcharacterisati

42、onofBi/N-GF.(a)Lowmagnificationbrightfield(BF)-STEMimage.(b)Magnifiedviewoftheindicatedareain(a),showingnanoparticledecorationofthegraphiteflake.(c)HighmagnificationHAADF-STEMimageoftheparticles,showingamorphousaggregationofatomsandsomeloosesingleatoms.(d)HAADF-STEMimageand(e)fastFouriertransformofa

43、nanoparticle,confirminglackofcrystallinity.(f)HAADF-STEMimageand(gi)accompanyingEDSmapping,confirmingBiaggregatenanoparticlesdispersedontheN-dopedgraphitefelt134新型炭材料(中英文)第39卷(Fig.2fi).As illustrated in the XRD patterns of GF andBi/N-GF(Fig.3a),nocharacteristicdiffractionpeaksofBiwereobserved.Thethr

44、eepronouncedpeaksap-pearingat26.6,44.7and55.1canbeascribedtothe(004),(102)and(105)crystalreflectionsofCinGF,respectively(PDF#261080).Thesurfacecom-positionandoxidationstateofthesampleswereana-lyzedbyXPS(Fig.3b).TheC1sXPSspectraforboth GF and Bi/N-GF can be deconvoluted into 3peaks corresponding to C

45、C(284.8 eV),CC(285.3eV)andCO(286.2eV)(Fig.S2).NotethatthecontentofCCinBi/N-GFissimilartothatinGFbutthecontentofCOishigher.Moreoxygen-containingfunctionalgroupscanboosttheCr3+/Cr2+redox reaction,benefiting the ICRFB.As shown inFig.3c,incontrasttoGFthatcontainssolelygraphit-icN(originatingfromthepolya

46、crylonitrileprecursorused for the preparation of GF),Bi/N-GF exhibitsthreeN1speaksattributabletographiticN(401.0eV),pyrrolicN(399.6eV),andpyridinicN(398.3eV),resultingfromthePDAdopant.ThesurfaceatomiccontentofNinBi/N-GFwasestimatedtobeabout2.6%.ThepercentageofpyridinicNishigherthanthatofpyrrolicN.Th

47、isisbeneficialsincepyridinicNdopingoffersloneelectronpairs,whichfavorthead-sorption of the positively charged cadmium ions topromotetheredoxreactionofCr3+/Cr2+20.Twoprom-inentpeakscenteredat162.5and157.0eVwereob-servedforBi4fXPSspectrum,whichcorrespondtothe4f2/5and4f2/7peaksofBi0(Fig.3d),suggestingt

48、heformationofmetallicBi.WeusedCVtoexplorethereactivityofGF,N-GF,Bi-GF,andBi/N-GFfortheredoxreactionsofFe2+/Fe3+andCr3+/Cr2+.Theobtainedelectrochemicalparameters were listed in Table S1.It can be seenfromFig.4a,thattwopeaksofFe2+/Fe3+redoxpairswere found in all samples.Compared with GF,thepeakredox c

49、urrent of Bi/N-GF is significantly en-hanced.Theoxidationpeakcurrentdensities(Ipa)of170165160155Bi 4fBi4f7/2 Bi0Intensity/(a.u.)Binding energy/eVBi4f5/2 Bi0Bi/N-GF204060Intensity/(a.u.)2/()Bi/N-GFGFC PDF#26-1080N 1sGraphitic NPyrrolic NPyridinic NBi/N-GF404402400398396Graphitic NGFBinding energy/eVI

50、ntensity/(a.u.)12009006003000Binding energy/eVBi/N-GFGFO 1sN 1sC 1sBi 4fIntensity/(a.u.)(a)(b)(c)(d)Fig.3(a)XRDpatternsofGFandBi/N-GF.(b)Wide-surveyand(c)N1sXPSspectraofGFandBi/N-GF.(d)Bi4fXPSspectrumofBi/N-GF第1期CHEHang-xinetal:BismuthnanoparticlesanchoredonN-dopedgraphitefeltstogivestableand1350.00

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服