ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:11.20KB ,
资源ID:2893206      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2893206.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(Gabor框和Littlewood问题的开题报告.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Gabor框和Littlewood问题的开题报告.docx

1、Gabor框和Littlewood问题的开题报告研究方向:Gabor框和Littlewood问题1.研究背景Gabor框和Littlewood问题是调和分析中重要的两个研究方向,具有广泛的应用领域。Gabor框是一组由Gabor原子组成的函数集合,是信号分析领域中常用的一种表示方法。Littlewood问题则是关于Gabor框中序列极限性质的一个经典问题,对信号处理和图像处理等领域中的问题具有深远影响。2.研究目的本文旨在深入研究Gabor框和Littlewood问题的相关理论,探讨它们在信号分析和图像处理等领域中的应用,为进一步应用和拓展这些理论奠定基础。3.研究内容(1)Gabor框的定义

2、与性质:介绍Gabor框的定义、性质和基本理论,包括Gabor原子的定义、能量正交性和框性质等;(2)Gabor框的应用:探讨Gabor框在信号分析和图像处理等领域中的应用,包括压缩感知、信号分析和音频处理等;(3)Littlewood问题的研究:介绍Littlewood问题的定义、基本理论和研究进展,分析极限序列的存在性和性质;(4)Littlewood问题的应用:探讨Littlewood问题在信号分析和图像处理中的应用,包括图像处理中的噪声去除、信号分析中的频率识别等。4.研究方法本文将采用数学分析和计算机仿真等方法进行研究。数学分析将用于推导Gabor框和Littlewood问题的相关理

3、论,探讨其基本性质和应用,计算机仿真则将用于对理论模型进行模拟和验证。5.研究预期成果通过对Gabor框和Littlewood问题的研究,预期可以得出以下成果:(1)深入理解Gabor框和Littlewood问题的相关理论,掌握相关算法和计算方法;(2)探讨Gabor框和Littlewood问题在信号分析和图像处理等领域中的应用,为实际问题提供解决方案;(3)对Gabor框和Littlewood问题进行计算机仿真和实验验证,进一步验证理论模型的可行性和实用性。6.拟定计划(1)文献查阅:2022年3月-2022年5月主要任务:1)对于Gabor框和Littlewood问题的相关文献进行搜集和筛

4、选,建立文献库和知识体系;2)对相关领域的研究进展和应用进行深入了解和分析。(2)理论研究:2022年6月-2023年6月主要任务:1)深入探讨Gabor框和Littlewood问题的定义、性质和基本理论;2)研究Gabor框和Littlewood问题的应用场景和算法模型;3)推导Gabor框和Littlewood问题的数学模型。(3)数值模拟:2023年7月-2023年11月主要任务:1)基于已有理论模型,开展计算机仿真和实验验证;2)对仿真结果进行统计和分析,评估理论模型的可行性和实用性。(4)论文撰写:2023年12月-2024年2月主要任务:1)对研究成果进行整理和汇总,撰写论文;2)

5、对论文进行修订和完善。7.参考文献1 Daubechies, I., & Grossmann, A. (1984). An elementary approach to Wavelets. Springer.2 Feichtinger, H. G., & Strohmer, T. (1998). Gabor analysis and algorithms: Theory and applications (Vol. 246). Birkhuser.3 Janssen, A. J., & Van Oers, R. M. (1993). The existence of Littlewood-Paley sequences for Gabor frames. Journal of Functional Analysis, 113(2), 374-389.4 Ron, A., & Shen, Z. (1997). Affine systems in L2(R) a Gabor meets wavelets. Wavelet analysis and its applications, 143-178.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服