ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:104KB ,
资源ID:2875529      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2875529.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(双鸭山市2017高二上期中考试数学文试题含答案.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双鸭山市2017高二上期中考试数学文试题含答案.doc

1、双鸭山市2017-2018学年度上学期高(二) 数学(文科)学科期中考试试题 第I卷 (选择题, 共60分) 一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.直线2x+y-1=0的斜率为(  ) A.2 B.-2 C. D. 2.命题“∀x∈R,x2≠x”的否定是(  ) A.∀x∉R,x2≠x B.∀x∈R,x2=x C.∃x∉R,x2≠x D.∃x∈R,x2=x 3.抛物线y=-x2的准线方程是(  ) A.x= B.y=2

2、 C.y= D.y=-2 4.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是(  ) A. p∧﹁q B.﹁p∧q C.﹁p∧﹁q D.p∧q 5.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线的离心率为(  ) A. B. C. D. 6.已知椭圆的左焦点为,则(  ) A.9 B.4 C.3

3、 D.2 7..已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则(  ) A. B. C. D.3 8.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于(  ) A.π B.4π C.8π D.9π 9.已知椭圆+=1(a>b>0)的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心

4、率e为(  ) A. B. C. D. 10.已知双曲线-=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  ) A.-=1 B.-=1 C.-y2=1 D. x2-=1 11.已知x,y满足约束条件若z=ax+y的最大值为4,则a=(  ) A.3 B.2 C.-2 D.-3 12.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的

5、左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( ) A. B. C. D. 第Ⅱ卷 (非选择题, 共90分) 二、 填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.设m是常数,若点F(0,5)是双曲线-=1的一个焦点,则m=_______. 14.若x,y满足约束条件则的最大值

6、为________. 15.过两圆x2+y2-x-y-2=0与x2+y2+4x-4y-8=0的交点和点(3,1)的圆的方程是_______. 16.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为_______. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分10分) 设直线l经过2x-3y+2=0和3x-4y-2=0的交点,且与两坐标轴围成等腰直角三角形,求直线l的方程. 18.(本题满分12分) 若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9,它

7、到焦点的距离为10,求抛物线方程和点M的坐标. 19. (本题满分12分) 已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为A,B. (1)求直线PA,PB的方程; (2)求过P点的圆C的切线长. 20.(本题满分12分) 设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0. (1)若a=1,且p∧q为真,求实数x的取值范围; (2)若p是q成立的必要条件,求实数a的取值范围. 21.(本题满分12分) 已知椭圆 的离

8、心率为,点在C上. (I)求C的方程; (II)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值. 22.(本题满分12分) 如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1. (1)求p的值; (2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围. 高二数学(文科)期中试题答案 二、 选择题 1 2 3

9、 4 5 6 7 8 9 10 11 12 B D B A D C B B B D B A 三、 填空题 13. 16 14. 3 15.x2+y2-x+y+2=0 16. 6 三、解答题 17.(本题满分10分) 【解】 设所求的直线方程为(2x-3y+2)+λ(3x-4y-2)=0, 整理得(2+3λ)x-(4λ+3)y-2λ+2=0, 由题意,得=±1, 解得λ=-1,或λ=-. 所以所求的直线方程为x-y-4=0,或x+y-24=0. 18. (本题满分12分) 【解】 由抛物

10、线定义,焦点为F,则准线为x=.由题意,设M到准线的距离为|MN|,则|MN|=|MF|=10, 即-(-9)=10.∴p=2. 故抛物线方程为y2=-4x,将M(-9,y)代入y2=-4x,解得y=±6, ∴M(-9,6)或M(-9,-6). 19.(本题满分12分) 【解】 (1)切线的斜率存在,设切线方程为y+1=k(x-2),即kx-y-2k-1=0. 圆心到直线的距离等于,即=,∴k2-6k-7=0,解得k=7或k=-1, 故所求的切线方程为y+1=7(x-2)或y+1=-(x-2), 即7x-y-15=0或x+y-1=0. (2)在Rt△PAC中|PA|2=|PC

11、2-|AC|2=(2-1)2+(-1-2)2-2=8, ∴过P点的圆C的切线长为2. 20.(本题满分12分) 【解】 (1)由x2-4ax+3a2<0,得(x-3a)·(x-a)<0,又a>0,所以a

12、 21.(本题满分12分) 22.(本题满分12分) 【解】 (1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2. (2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1. 因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0), 由消去x得y2-4sy-4=0, 故y1y2=-4,所以B. 又直线AB的斜率为,故直线FN的斜率为-,从而得直线FN:y=-(x-1),直线BN:y=-,所以N. 设M(m,0),由A,M,N三点共线得=,于是m==2+, 所以m<0或m>2. 经检验,m<0或m>2满足题意. 综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服