ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:208.50KB ,
资源ID:2872931      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2872931.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学三角函数模型的简单应用学案新人教A版必修4.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学三角函数模型的简单应用学案新人教A版必修4.doc

1、河北省唐山市开滦第二中学高中数学 三角函数模型的简单应用学案 新人教A版必修4【学习目标】会用三角函数解决一些简单的实际问题。【重点难点】在实际问题中三角函数模型的应用。 【学习内容】问题情境导学实例:(1)通过必修1中函数模型及其应用的学习,我们知道,在现实生活中处处存在变量间的函数关系,并可以选择适当的函数模型来刻画它。(2)现实生活中存在大量的周期现象,如简谐振动、气温变化规律、月圆月缺、涨潮与退潮等,这些现象能否用相应的函数模型来刻画?三角函数模型?想一想:解决实际问题的基本过程是什么?看一看(1)数学模型:数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问

2、题时,所得出的关于实际问题的数学描述。(2)解决三角函数应用问题的一般步骤审题:阅读理解用普通文字语言表述的实际问题的类型、思想内涵、问题的实质,初步预测所属的数学模型。建模:将题中的非数学语言化为数学语言,然后根据题意,列出数量关系建立三角函数模型。解模:运用三角函数的有关公式进行推理、运算,使问题得到解决。还原评价:对解出的结果要代入原问题中进行检验、评价。课堂互动探究类型一、函数图像、解析式问题例1、画出函数的图像并观察其周期。类型二、三角函数模型的应用例2、如图,某地一天从614时的温度变化曲线近似满足函数(1) 求这一天614时的最大温差;(2)写出这段曲线的函数解析式。010203

3、06101444t/h 812T/ oC 类型三、数据拟合函数问题例4、海水受日月的影响,在一定的时候发生涨潮的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表:时刻水深时刻水深时刻水深0:005.09:002.518::005.03:007.512:005.021:002.56:005.015:007.524:005.0(1) 选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似值(精确度0.001)(2) 一条船的吃水深度(船底与水面的距离)为4米,安全条例规定至少

4、要有1.5米的安全间隙(船底与洋底的距离)该船何时能进入港口?在港口能呆多久?(3) 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须卸货,将船驶向较深的水域?【课堂小结与反思】通过这节课的学习有哪些收获?【课后作业与练习】基础达标1.电流随时间变化的关系是,则电流变化的周期是( ) 2.某人的血压满足函数式,其中为血压,为时间(单位:分钟),则此人每分钟心跳的次数为( )60 70 80 903.函数的部分图像是( )4.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为,则塔高为( )米 米 米 米5.振动量

5、的初相和频率分别为和,则它的相位是_6. 函数的部分图像如图,则函数解析式_ 能力提升7.设是某港口水的深度米关于时间时的函数,其中,下表是该港口某一天从0时至24时记录的时间与水深的关系:036912151821241215.112.19.111.914.911.98.912.1经长期观察,函数的图像可以近似地看成函数的图像,下面的函数中,最能近似表示表中数据间对应关系的函数是( )8.已知某海滨浴场的海浪高度是时间单位h)的函数,记做,下表是某日各时的浪高数据:036912151821241.51.00.51.01.51.00.50.991.5经长期观测的曲线近似看成是函数的图像(1)根据以上数据,求出函数的最小正周期、振幅及函数表达式(2)依据规定,当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,那么一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者进行运动?

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服