ImageVerifierCode 换一换
格式:PPTX , 页数:26 ,大小:787.42KB ,
资源ID:2817219      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2817219.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(拉格朗日定理和函数的单调性市公开课一等奖百校联赛特等奖课件.pptx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

拉格朗日定理和函数的单调性市公开课一等奖百校联赛特等奖课件.pptx

1、返回返回返回返回后页后页后页后页前页前页前页前页1 拉格朗日定理和 函数单调性一、罗尔定理与拉格朗日定理二、函数单调性判别质来得到 f 在该区间上整体性质.中值定理,就能够依据在区间上性 中值定理是联络 与 f 桥梁.有了 返回返回返回返回第1页返回返回返回返回后页后页后页后页前页前页前页前页定理定理6.1(罗尔中值定理罗尔中值定理)一、罗尔定理与拉格朗日定理那么在开区间那么在开区间(a,b)内必定内必定(最少最少)存在一点存在一点,使使(i)在闭区间在闭区间 a,b 上连续上连续;(ii)在开区间在开区间(a,b)上可导上可导;(iii)f(a)=f(b).第2页返回返回返回返回后页后页后页

2、后页前页前页前页前页(1)几何意义几何意义据右图据右图,平平.一点处一点处切线也是水切线也是水 看出看出,曲曲线上最少有线上最少有.由几何直由几何直观能够观能够所以线段所以线段 AB 是水平是水平因为因为点击上图动画演示点击上图动画演示f(a)=f(b),第3页返回返回返回返回后页后页后页后页前页前页前页前页(2)条件分析条件分析定理中三个条件都很主要,缺乏一个定理中三个条件都很主要,缺乏一个,结论不结论不在在 0,1 上满足条件上满足条件 (ii)和和一定成立一定成立.数在数在 (0,1)上导数恒为上导数恒为1.(iii),但条件但条件(i)不满足不满足,该该函函 第4页返回返回返回返回后页

3、后页后页后页前页前页前页前页满足条件满足条件(i)和和(iii),但条但条件件条件条件(i)和和(ii),但条件但条件(iii)满足满足处不可导处不可导),结论也不成立结论也不成立.(ii)却遭到破坏却遭到破坏(f 在在 x=0 内导数恒为内导数恒为1.却遭到破坏却遭到破坏,该函数在该函数在(0,1)第5页返回返回返回返回后页后页后页后页前页前页前页前页定理证实定理证实因为因为 f(x)在在 a,b 上连续上连续,所以由连续函数最大、所以由连续函数最大、情形情形1 M=m.此时此时 f(x)恒为常数恒为常数,它导函数恒它导函数恒 f ()=0.小值小值 m.下面分两种情形加以讨论下面分两种情形

4、加以讨论.最小值定理最小值定理,f(x)在在 a,b 上能取得最大值上能取得最大值 M 和最和最 等于零等于零,此时可在此时可在(a,b)内随意取一点内随意取一点 ,就就有有 第6页返回返回返回返回后页后页后页后页前页前页前页前页情形情形2 m M.既既然最大、最小值不等然最大、最小值不等,从而最大从而最大因为在区间内部取到最大值一定是极大值因为在区间内部取到最大值一定是极大值,所以所以使得使得大值大值不在端点取到不在端点取到,故存在故存在 值与值与最小值最少有一个不在端点取到最小值最少有一个不在端点取到.不妨设最不妨设最由费马定理由费马定理,得得第7页返回返回返回返回后页后页后页后页前页前页

5、前页前页这与条件矛盾这与条件矛盾.例例1 设设 p(x)是一个多项式是一个多项式,且方程且方程 p(x)=0 没有没有实实证证重数为重数为 1.根根,则方程则方程 p(x)=0 至多有一个实根,且这个根至多有一个实根,且这个根第8页返回返回返回返回后页后页后页后页前页前页前页前页矛盾矛盾.第9页返回返回返回返回后页后页后页后页前页前页前页前页设函数设函数 f(x)满足:满足:定理定理6.2(拉格朗日中值定理拉格朗日中值定理)(i)f(x)在闭区间在闭区间 a,b 上连续上连续;(ii)f(x)在开区间在开区间(a,b)内可内可导导.那么在开区间那么在开区间 内内(最少最少)存在一点存在一点 ,

6、使得使得第10页返回返回返回返回后页后页后页后页前页前页前页前页几何意义几何意义 如右图,如右图,用用平行推移方法平行推移方法,曲线上曲线上最少在一点最少在一点可见,罗尔定理是拉格朗日定理一个特例可见,罗尔定理是拉格朗日定理一个特例.连线斜率为连线斜率为 y=f(x)两个端点两个端点 A,B 处切线与处切线与 AB 平行平行,其斜率其斜率 也等于也等于曲线曲线 第11页返回返回返回返回后页后页后页后页前页前页前页前页定理证实定理证实 设设能够验证能够验证F(x)满足罗尔定理三个条件满足罗尔定理三个条件,所以所以使使即即第12页返回返回返回返回后页后页后页后页前页前页前页前页推论推论1设设 在区

7、间在区间 I上导函数上导函数 ,则则是一个常值函数是一个常值函数.证证 对于区间对于区间 I上任何两点上任何两点 与与 ,在在x1,x2上满足拉格朗日定理条件上满足拉格朗日定理条件,则有则有这就是说这就是说,在区间在区间I上任何两个值都相等上任何两个值都相等,所所认为常值函数认为常值函数.第13页返回返回返回返回后页后页后页后页前页前页前页前页证证 分别按左右极限来证实分别按左右极限来证实.第14页返回返回返回返回后页后页后页后页前页前页前页前页对上式两边求极限,便得对上式两边求极限,便得第15页返回返回返回返回后页后页后页后页前页前页前页前页第16页返回返回返回返回后页后页后页后页前页前页前

8、页前页例例2 设设 f(x)在区间在区间 I 上可微上可微,且且,则函则函数数f(x)在区间在区间I上一致连续上一致连续.证证 对于任意正数对于任意正数 ,取取 ,对任意对任意只要只要 ,便有便有故故 在在I上一致连续上一致连续.第17页返回返回返回返回后页后页后页后页前页前页前页前页例例3求证求证:证证 设设 显然显然 在区间在区间 上上满足拉格朗日定理条件,故有满足拉格朗日定理条件,故有注注例例3中不等号能够成为严格中不等号能够成为严格.实际上实际上,当当式式成立成立.当当 时,时,和和 时时,显然不为零显然不为零,严格不等严格不等第18页返回返回返回返回后页后页后页后页前页前页前页前页第

9、19页返回返回返回返回后页后页后页后页前页前页前页前页二、函数单调性判别改为严格不等号改为严格不等号,则对应地称它为严格增则对应地称它为严格增(减减).下面定理是本节中两个主要定理下面定理是本节中两个主要定理,今后将不今后将不若函数若函数若若“”断地使用断地使用.第20页返回返回返回返回后页后页后页后页前页前页前页前页定理定理6.3证证第21页返回返回返回返回后页后页后页后页前页前页前页前页定理定理6.4 可微函数可微函数 f(x)在区间在区间 I 上严格递增充上严格递增充即即证证个区间个区间.满足满足 点集不含一点集不含一要条件是:要条件是:第22页返回返回返回返回后页后页后页后页前页前页前

10、页前页矛盾矛盾.充分性得证充分性得证.注注 请读者写出对应于递减和严格递减判别定理请读者写出对应于递减和严格递减判别定理.必要性请读者自证必要性请读者自证.在实际应用中我们经常会用到下面这个事实在实际应用中我们经常会用到下面这个事实.性质性质第23页返回返回返回返回后页后页后页后页前页前页前页前页作为应用,下面再举两个简单例子作为应用,下面再举两个简单例子.例例7 求证求证证证恒有恒有第24页返回返回返回返回后页后页后页后页前页前页前页前页例例8 设设 f(x)=x 3 x.讨论函数讨论函数 f 单调区间单调区间.解解 因为因为所以所以即即第25页返回返回返回返回后页后页后页后页前页前页前页前页-1.5-1-0.50.511.5-1.5-1-0.5O0.511.5第26页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服