ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:265.51KB ,
资源ID:2775273      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2775273.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(余弦定理及其应用.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

余弦定理及其应用.doc

1、余弦定理及其应用【教学目标】【知识与技能目标】(1)了解并掌握余弦定理及其推导过程(2)会利用余弦定理来求解简单的斜三角形中有关边、角方面的问题(3)能利用计算器进行简单的计算(反三角)【过程与能力目标】(1)用向量的方法证明余弦定理,不仅可以体现向量的工具性,更能加深对向量知识应用的认识(2)通过引导、启发、诱导学生发现并且顺利推导出余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力【情感与态度目标】通过三角函数、余弦定理、向量数量积等知识间的联系,来体现事物之间的普遍联系与辩证统一【教学重点】余弦定理的证明及应用【教学难点】(1)用向量知识证明余弦定理时的思路分析与探

2、索(2)余弦定理在解三角形时的应用思路【教学过程】一、引入问:在RtABC中,若C=,三边之间满足什么关系?答:问:若C,三边之间是否还满足上述关系?答:应该不会有了!问:何以见得?答:假如不变,将A、B往里压缩,则C,且;同理,假如不变,将A、B往外拉伸,则C,且师:非常正确!那么,这样的变化有没有什么规律呢?答:规律肯定会有,否则,您就不会拿它来说事了问:仔细观察,然后想想,到底会有什么规律呢?答:有点象向量的加法或减法,或【探求】设ABC的三边长分别为,由于问:仔细观察这个式子,你能否找出它的内在特点?答:能!式子中有三边一角,具体包括如下三个方面:第一、左边是什么边,右边就是什么角;第

3、二、左边有什么边,右边就没有什么边;第三、边是平方和,乘积那里是“减号”师:很好!那么,你能否仿照这个形式写出类似的另外两个?答:可以!它们是:和【总结】这就是我们今天要讲的余弦定理,现在,让我们来继续研究它的结构特点以及其应用问题板书课题 余弦定理及其应用二、新课(一)余弦定理的文字表述:三角形的任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍.(二)余弦定理的另一种表述形式:;(三)归纳1. 熟悉定理的结构,注意“平方”“夹角”“余弦”等;2. 每个式子中都有四个量,知道其中的三个就可以求另外的一个;3. 当夹角为(即三角形为直角三角形)时即为勾股定理 (特例)(四)

4、余弦定理的适用范围1. 已知三边求角;2. 已知两边及其夹角求第三边三、应用例1在ABC中,已知,求这个三角形的最大内角【分析】根据大边对大角的原则,知:A为最大解:,A=,即该三角形的最大内角等于练习1已知ABC的三边长分别是,求三角形的最大内角答案:思考:提示:求出与最大边相对应的角的余弦值,再与0进行比较,判定标准如下:若0,则为锐角三角形;若=0,则为直角三角形;若0,则为钝角三角形例2在ABC中,求及A【分析】已知两边夹角,可以用公式直接求出;然后用公式即可求出角A解:由得: 解得;又,A=例3已知ABC中,解此三角形【分析】知道边的比值,可以设其公约数为k,因为,在后面的运算中又可

5、以同时约分将其约掉,原则上一般先求最小的角;当然,也可以先求最大的角解法一:设其三边的公约数为k,则,由得;由得,B=; 因此C=解法二:设其三边的公约数为k,则,由得即,(此时可用计算器的第二功能求的反余弦) C=;由得,B=;A=例4已知ABC中,【分析】这种题型一般都要归结为解方程组解:由得,即,由,分类讨论如下:当时,由得:当时,由得:即或练习2在ABC中,求提示:,练习3在棱长为1的正方体中,M、N分别为与的中点,那么直线AM与CN所成角的余弦值是( )B1(练习3图)A1ABC1D1CDMN 提示:取中点,连,则;答案:(D)四、课堂小结: 略五、反思 略六、课后练习 略七、实践活动 参阅解三角形6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服