ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1,023.04KB ,
资源ID:2771890      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2771890.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(正定矩阵的性质及应用.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正定矩阵的性质及应用.doc

1、(完整word版)正定矩阵的性质及应用正定矩阵的性质及应用崔华梅(河南大学数学与信息科学学院 开封475004)摘 要 本文给出了实对称矩阵为正定矩阵的充分必要条件和一个充分条件,从不同角度介绍正定矩阵的一些初步应用。关键字 正定矩阵;行列式;不等式;极值;最值1引言二次型理论起源于解析几何中化二次曲线和二次曲面方程为标准型的问题,正定二次型在二次型理论中占有很重要的地位,在计算数学,数学物理以及优化控制理论中都得到了广泛的应用。在实数域上文字的正定二次型与阶正定矩阵是一一对应的。本文分别在第二部分总结了正定矩阵的性质,第三部分从不同角度介绍了正定矩阵一些应用,最后在第四部分指出正定矩阵概念的

2、推广。2正定矩阵的性质2.1 概念定义1实二次型称为正定的,如果对于任意一组不全为零的实数,都有.定义2实对称矩阵A称为正定的,如果二次型正定.注:(1)正定二次型和正定矩阵是一一对应的关系.(2)经非退化的线性替换,新二次型的矩阵和原二次型的矩阵合同.2.2 正定矩阵的充分必要条件(1)n元实二次型正定它的正惯性指数为n;(2)一个实对称矩阵A正定A与E合同,即可逆矩阵C,使得 A=;(3)实二次型=是正定的A的顺序主子式全大于零;(4)一个实对称矩阵A正定A的特征值全大于零;(5)一个实对称矩阵A正定A的主子式全大于零;(6)A,B是实对称矩阵,则正定A,B均正定;(7)A实对称矩阵,A正

3、定正定矩阵B,使得A=,(k为任意正整数).证明:(6))必要性: 正定 C的各阶顺序主子式全大于零 A,B均为对称矩阵,且A的各阶顺序主子式全大于零 A是正定矩阵,且B的各阶顺序主子式全大于零 B是正定矩阵)充分性:设A,B的全部特征值分别为:;A,B均正定,正交可逆矩阵P,Q 使得;,其中()=令T=,则,T是可逆阵C=,其中C的特征值全大于零C是正定矩阵(7) )充分性:证明:B正定正交可逆矩阵P, 使得;其中,是正定的)必要性:A正定正交可逆矩阵Q, 使得,其中,令=B,则B是正定的,且A=.2.3 判定实对称矩阵为正定矩阵的一个充分条件引理设是阶复数矩阵的秩则引理2 是复数矩阵,若则

4、为可逆矩阵.证明:由引理1,知且故 可逆引理3若在上连续,异号,则至少存在一点,使得 定理1:设是主对角元全大于零的实对称矩阵则 必为正定矩阵证明:由引理2及条件,则知是可逆矩阵,构造函数则若则 由引理3, 使得 即又由引理2知是可逆矩阵 矛盾即即的所有顺序主子式全大于零故正定3正定矩阵的应用对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。3.1用正定矩阵的定义证明一些结论例1.设为实矩阵,且的秩,证明:正定证明:,只有零解正定例2.为阶正定矩阵,为阶实矩阵,且,则是正定矩阵.证明

5、: 为实对称矩阵, 只有零解A正定是正定矩阵总结:以上两例,利用实矩阵构造正定矩阵的方法:若A 不是方阵,也不对称,则是正定矩阵,而且上述两例显示了齐次线性方程组理论在正定二次型理论中的应用。3.2用充分必要条件:A正定可逆矩阵C,使得 A=证明一些结论例3.若A是正定矩阵,则A的伴随矩阵和也是正定矩阵证明: A正定可逆矩阵C,使得 A=即与A合同是正定矩阵也是正定矩阵例4.A ,B均为n阶实对称矩阵,A为正定矩阵证明:实可逆矩阵 C,使得 .证明:是正定矩阵实可逆矩阵,使得且为实对称矩阵正交矩阵,使得令,则,注:看到实对称矩阵,应联系到正交合同于对角阵。例5.为阶正定矩阵,B为阶半正定矩阵,

6、则证明: 是正定矩阵实可逆矩阵,使得,且,,例6.均为阶正定矩阵。且,则是正定矩阵.证明:是对称矩阵是正定矩阵实可逆矩阵,使得 是正定矩阵的特征值全为正数的特征值全为正数是正定矩阵是正定矩阵 例7.是实对称矩阵,且正定,则的特征值全为实数.证明:是正定矩阵实可逆矩阵使得 实对称矩阵的特征值全为实数的特征值全为实数的特征值全为实数例8.(1)若,是正定二次型,则为负定二次型;(2)是正定矩阵,则;(3)是阶实可逆矩阵,则.证明:见文献2.3.3 正定矩阵在行列式中的应用3.3.1判断某一方阵的行列式是否为零(即是否可逆),或是否大于零(或小于零),转化为正定矩阵例9.是实可逆对称阵,实反对称矩阵

7、,且则可逆.证明:实可逆对称矩阵正定矩阵为实反对称矩阵,实反对称矩阵的特征值为零或纯虚数为半正定阵。3.3.2利用正定矩阵的行列式小于或等于主对角线上元素之积例10.是任意阶实方阵,则证明:同例8.(3)3.4 用正定矩阵证明不等式例11.(其中不全为零的实数)证明:.的各阶顺序主子式是正定矩阵有故 原不等式成立3.5 正定矩阵在数学分析中的应用3.5.1判断多元函数的极值问题定理2.元实函数的一阶偏导数等于零的点为且在点处具有二阶连续偏导数,则海塞矩阵当为正定矩阵时,为的极小值;当为负定矩阵时,为的极大值;当为不定矩阵时,不是的极值。特别地,当为二元函数时,若在处一阶偏导数为零,且在处对有二

8、阶连续偏导数,则当正定时,在有极小值;当负定时,在有极大值;当不定时,在无极值。例12.讨论函数的极值.解:有二阶连续偏导数令则 ,即的各阶顺序主子式为正定,故 在处有极小值为注:当为半定时,不能判断。3.5.2正定矩阵在积分中的应用例13.证明:椭球体的体积等于其中是正定矩阵.证明:是正定矩阵,正交矩阵,使得 为的特征值令作变换,则此变换的行列式为3.5.3 用正定矩阵在单位球面上求最值例14.是阶实对称矩阵,求证:二次型在单位球面上的最大最小值分别为矩阵的最大最小特征值.证明:设的特征值为令则的特征值均非负;的特征值均非负。又,均为实对称矩阵即 下证:可以达到最大最小特征值假定经过正交变换 ,化为不妨设分别为中的最小最大值取,并令,则则取,并令,则则即 当上时,的最大最小值恰为矩阵的最大最小特征值。4结束语本文还可以类似的总结出半正定矩阵的定义、充分必要条件及其应用。随着应用的需要和研究的深入还有许多推广,把实对称正定矩阵推广到实正定矩阵,广义正定矩阵,广义次正定矩阵等等,但由于本人目前能力有限,待做深入研究。参考文献1王萼芳,石生明,高等代数(第三版),高等教育出版社.2徐仲,陆全,高等代数导教导学导考,西北工业大学出版社.3陈纪修,於崇华,金路,数学分析,高等教育出版社.4屠伯埙,徐诚浩,王芬,高等代数,上海科技出版社.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服