ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:414.04KB ,
资源ID:2715886      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2715886.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(复变函数教案第三章.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

复变函数教案第三章.doc

1、(word完整版)复变函数教案第三章章节名称:复变函数的积分学时安排:6学时教学要求:使学生掌握复变函数积分定义,会灵活运用柯西积分公式计算相关积分,以及会利用解析函数性质求函数的共轭调和函数.教学内容:复变函数积分定义,积分计算公式,柯西积分公式,高阶导数,以及解析函数和调和函数关系教学重点:柯西积分公式以及解析函数和调和函数的关系教学难点:柯西积分公式教学手段:课堂讲授教学过程:第三章 复变函数的积分1、复变函数积分的概念1,有向曲线:设为平面上给定的一条光滑(或者按段光滑)曲线,如果选定的两个可能方向中的一个作为正方向(或者正向),那么我们把理解为带有方向的曲线,称为有向曲线。2,积分:

2、设函数定义在区域内,为在区域内起点为终点为的一条光滑的有向曲线。把曲线任意分成个弧段,设分点为,在每个弧段上任意取一点,并作和式这里。记的长度,。当无限增加,且趋于零时,如果不论对的分法及的取法如何,有唯一极限,那么称这极限值为函数沿曲线的积分.记作。注意:1)如果曲线为闭曲线,那么沿此闭曲线的积分记作。2)当曲线是轴上的区间,而时,这个积分定义就是一元实变函数定积分的定义.3,积分存在的条件及其计算法:1)积分存在的条件:(a)当是连续函数而C是光滑曲线时,积分是一定存在的;(b) 可以通过两个实变函数的线积分来计算。分析:设光滑曲线C由参数方程: 给出,正方向为参数增加的方向,参数对应于起

3、点A及终点B ,且 .如果在D内处处连续,那么及均为D内的连续函数,设,由于所以由于都是连续函数,根据线积分的存在定理,我们知道:当无限增大而弧段长度的最大值趋于零时,不论对C的分法如何,点的取法如何,上式右端的两个和式的极限都是存在的,因此注意: 2)积分的计算:计算公式:设光滑曲线C由参数方程: 给出,正方向为参数增加的方向,参数对应于起点A及终点B ,且 。则注意:(a)如果曲线C是由等光滑曲线段依次相互连接所组成的按段光滑曲线,那么(b)对极坐标形式,一样可以推广.应用举例:例1,计算,其中C为从原点到点3+4i的直线段。例2,计算,其中C为以为中心,为半径的正向圆周,为正整数.例3,

4、计算,其中C为(1)沿从原点到点=1+i的直线段;(练习:)(2)沿从原点到点=1的直线段,与从到的直线段所接成的折线.4,积分的性质1)=;2)=;(为常数)3)=;4)设曲线C的长度为L,函数在C上满足,那么。例4,设C为从原点到点=3+4i的直线段,试求积分绝对值的一个上界.2、Cauchy-Goursat基本定理1,假设在区域B内处处解析,且在区域B内连续.由于,所以及以及它们的偏导数均为B内的连续函数,且又因为 其中C为B内任何一条简单闭曲线,从格林公式与CAUCHYRIEMANN方程(路线C为正向)得其中D是C围成的区域,所以 2,CauchyGoursat基本定理(CAUCHY积

5、分定理)假设在单连通域B内处处解析,那么函数沿B内任何一条封闭曲线C的积分为零: 注意:(1)定理中的C可以不是简单曲线.(2)如果曲线C是区域B的边界,函数在B内与C上解析,仍然成立。(3)如果曲线C是区域B的边界,函数在B内解析,在闭区域上连续,仍然成立.3、基本定理的推广-复合闭路定理1,假设为D内任意两条(正方向为逆时针方向)简单闭曲线,在C的内部,而且以为边界的区域全含于D,那么我们有。如果我们把如上两条简单闭曲线看成一个复合闭路,那么.从上面的讨论,我们得到:闭路变形原理:在区域内的一个解析函数沿闭曲线的积分,不因闭曲线在区域内作连续变形而改变它的值,只要在变形过程中曲线不经过函数

6、不解析的点。2,复合闭路定理:设C为多连通域D内的一条简单闭曲线,为C内部的简单闭曲线,它们互不包含也互不相交,并且以为边界的区域全含于D。如果在D内解析,那么1) 。其中取正方向;2)。其中为由C及所组成的复合闭路(方向为C按逆时针进行,按顺时针方向进行)。应用举例:例 计算的值,为包含圆周在内的任何一条正向简单闭曲线.4、原函数与不定积分1,定理一:如果函数在单连通域B内处处解析,那么积分与连结起点及终点的路线C无关。(根据:CauchyGoursat基本定理)2,定理二:如果函数在单连通域B内处处解析,那么函数必为B内的一个解析函数,并且。这个定理跟微积分学中的对变上限积分的求导定理完全

7、类似。3,原函数定义:如果函数在B内的导数等于,即,那么称为在区域B内的原函数。注意:的任何两个原函数相差一个常数。利用这一性质,可以推导跟牛顿-莱布尼兹公式类似的解析函数的积分计算公式。4,定理三:如果函数在单连通域B内处处解析,为的一个原函数,那么这里为区域B内的两点。应用举例:例1 求积分的值。例2 试沿区域内的圆弧,计算积分的值。5、柯西积分公式1,定理(柯西积分公式):如果在区域D内处处解析,C为D内的任何一条正向简单闭曲线,它的内部完全含于D,为C内部的任一点,那么2,平均值定理:一个解析函数在圆心处的值等于它在圆周上的平均值。(如果C是圆周,那么变为)3,应用举例:例 求下列积分

8、(沿圆周正向)的值1)2)6、解析函数的高阶导数1,定理 解析函数的导数仍为解析函数,它的阶导数为:其中C为在函数的解析区域D内围绕的任何一条正向简单闭曲线,而且它的内部全含于D。注意:高阶导数公式的作用,不在于通过积分来求导,而在于通过求导数来求积分.2,应用举例:例1,求下列积分的值,其中C为正向圆周:.1)2)例2,设函数在单连通域B内连续,且对于B内任何一条简单闭曲线C都有,证明在B内解析(Morera定理)7、解析函数与调和函数的关系1,定义:如果二元实变函数在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程:,那么称函数为区域D 内的调和函数。调和函数在诸如流体力学和电磁场理论等实

9、际问题中都有重要的应用。2,定理:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数.3,共轭调和函数:设为区域D内给定的调和函数,我们把使在D内构成解析函数的调和函数称为的共轭调和函数.(换一种说法:在D内满足C。-R。 方程的两个调和函数中,称为的共轭调和函数),或者说,区域D内的解析函数的虚部为实部的共轭调和函数.4,应用举例:例1 证明为调和函数,并求其共轭调和函数和由它们构成的解析函数。练习: 已知一调和函数,求一解析函数,使。教学小结:1,复变函数的积分是定积分在复数域中的自然推广,两者的定义在形式上是相似的,只是把定积分的被积函数从换成,积分区间换成一条起点为A终点为B的光滑曲线C。2,要掌握柯西积分定理相关的几个定理。3,会运用柯西积分公式、高阶导数公式等知识计算沿封闭曲线的积分。4,应掌握已知解析函数的实部或虚部求解析函数的方法。作业布置:第三章习题(P.99)2;5(1);7(5);8(5);9(5);30(1);31预习:第四章21

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服