ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:5.35MB ,
资源ID:2699948      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2699948.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(计及灵活性需求偏差的综合能源系统分布鲁棒优化调度.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

计及灵活性需求偏差的综合能源系统分布鲁棒优化调度.pdf

1、第39 卷第5期2023年10 月DOI:10.3969/j.issn.2096-8299.2023.05.002上海电力大学学报Journal of Shanghai University of Electric PowerVol.39,No.5Oct.2023计及灵活性需求偏差的综合能源系统分布鲁棒优化调度赵鑫,李晓露(上海电力大学电气工程学院,上海2 0 0 0 9 0)摘要:为了分析分布式新能源和需求侧灵活响应资源的不确定性对综合能源系统(IES)的影响:首先,建立了IES灵活性供需模型;其次,构建了基于场景概率驱动的IES两阶段分布鲁棒优化模型;最后,采用列与约束生成算法进行迭代求解

2、,通过仿真验证了该模型和求解算法的有效性。相较于传统的ES优化调度,其所提模型减少了系统的总运行成本,提升了系统的灵活性。关键词:综合能源系统;分布鲁棒;灵活性;不确定性;数据驱动;列与约束生成算法中图分类号:TM73文献标志码:A文章编号:2 0 9 6-8 2 9 9(2 0 2 3)0 4-0 42 6-10Distributed Robust Optimal Dispatch of Integrated Energy SystemConsidering Flexibility Demand DeviationZHAO Xin,LI Xiaolu(School of Electrical

3、 Engineering,Shanghai University of Electric Power,Shanghai 200090,China)Abstract:In order to better consider the impact of the uncertainty of distributed new energysources and the demand-side flexible response resources on the integrated energy system,firstly,theIES flexibility supply and demand mo

4、del is established.Secondly,the IES two-stage distributedrobust optimization model is constructed based on scenario probability driven.Finally,the Columnand Constraint Generation(CCG)algorithm is used for iterative solution.The effectiveness of theproposed model and solution algorithm is verified by

5、 simulation analysis.Compared with traditionalIES optimization scheduling,the model proposed in this paper reduces the total operating cost ofthe system and improves the flexibility of the system.Key words:integrated energy system;distributed robust;flexibility;uncertainty;data-driven;column and con

6、straint generation分布式电源(Distributed Generation,DG)出力和需求响应的不确定性易导致系统灵活性出现供需不平衡的现象,会对系统的稳定与安全运行产生巨大影响 。随机优化 2 3和鲁棒优化 45是处理不确定性问题的两种有效手段,但是随机优化往往需要大量的离散场景,决策精度取决于收稿日期:2 0 2 3-0 6-0 1通信作者简介:赵鑫(19 9 9 一),男,在读硕士,助理工程师。主要研究方向为综合能源系统优化运行。E-mail:warriors_。赵鑫,等:计及灵活性需求偏差的综合能源系统分布鲁棒优化调度统计数量,而鲁棒优化结果又太过保守。分布鲁棒优化

7、(Distributed Robust Optimal,DRO)在处理不确定性参数时结合了上述两种方法的优点,寻找最恶劣场景下的概率分布。传统分布鲁棒方法计算复杂,需要利用矩信息表征概率分布场景,再通过拉格朗日对偶转化将问题转化为半定规划问题 6。基于数据驱动的分布鲁棒方法因其可以利用不确定变量的历史信息这一特点,现已在无功优化 7、输电规划 8、储能规划 9、电力系统优化调度 10 1等领域得到应用,但在综合能源系统(I n t e g r a t e d En e r g y Sy s t e m,I ES)优化运行方面的应用仍相对匮乏。因此,将基于数据驱动的分布鲁棒方法引人到IES优化运

8、行中具有重要价值。近年来,越来越多的国内外学者将需求响应(Demand Response,DR)考虑到 IES 优化中。文献 11提出了以电价需求响应为驱动的多能源协同系统的优化模型,将风电、光伏、热电联产机组的出力根据能量枢纽模型调整,加入储能设备与DR。文献 12 采用蓄热装置提升供热灵活性,不同时间尺度下转移电、热负荷,充分发挥负荷侧灵活性资源的作用。文献 13根据电热联合需求响应,建立日内滚动优化模型解决日前调度存在偏差的问题。文献 14提出一种考虑用户响应特性的优化激励模型,求解能源服务商收益和用户成本最优策略。以上文献均在确定性DR 的基础上进行 IES 优化调度 1-14,并未考

9、虑DR的不确定性,也未研究激励措施对系统灵活性调节的影响。需求侧资源从用能侧为IES 的灵活运行提供另一种调整方案,对于提升系统经济性收效显著 15。文献 16 考虑区域间多种灵活性资源的协同互济,并采用条件风险价值量化灵活性不足风险成本,建立了多区域间的协调调度策略。文献 17 利用多种类型的电源消纳风电,实现了多种电源的分层优化协调。文献 18 建立了电-气-热互联运行模型,兼顾了网络的动态特性和运行灵活性约束。上述文献均未考虑一定时间内系统灵活性需求变化对灵活性供给爬坡调整的影响,也未深入挖掘DG出力的不确定性和用能侧响应资源的不确定性在IES 的双向互动能力。因此,本文首先从风电、光伏

10、(以下简称“风光”)和需求响应的不427确定性角度,建立计及灵活性需求偏差的灵活性供需平衡;其次,采用基于数据驱动的分布鲁棒方法处理风光出力和需求响应的不确定性,建立计及灵活性需求偏差的两阶段分布鲁棒优化调度模型;最后,通过相应算例分析所提模型的有效性,通过设置不同金额补贴价格分析其对IES灵活性的影响,并与随机优化和鲁棒优化的结果进行对比。1IES分布鲁棒优化框架IES中的源荷存在不确定性,这些不确定性不利于平抑净负荷波动,影响储能系统收益。为提高调度方案的普遍性和适用性,本文提出了一种计及灵活性需求偏差并基于新能源出力和需求响应功率历史数据驱动的两阶段分布鲁棒IES优化模型。整体优化调度框

11、架如图1所示。其中,日前第1阶段以IES的供能侧运行成本最小为目标确定各类可调节资源的出力,日前决策变量均为确定性变量。日内第2 阶段考虑不确定性,寻找最劣场景概率分布,根据日前调度方案实时调整,使需求侧灵活响应成本和灵活需求偏差成本最小。基于数据驱动的IES两阶段分布鲁棒优化模型日前第1阶段日内第2 阶段目标函数:IES供能侧运目标函数:需求侧灵活响应行成本最小成本、灵活性需求偏差成本最小变量:风光、负荷预测值变量:风光场景概率分布、需求响应功率量机组运行约束、储能设备需求响应约束、计及灵活性运行约束、电锅炉运行约束需求偏差的灵活性供需平衡约束电网功率平衡约束、热网功率平衡约束图1整体优化调

12、度框架为解决图1所示的整体优化调度问题,需要对IES内的多种可调节资源进行灵活性建模。2IES灵活性建模2.1IES灵活性供给模型IES灵活性供给来源包括燃气轮机和储能设备,灵活性需求根据用户对负荷的调度进行变化。428当系统灵活性不足时,燃气轮机上调出力以提高系统灵活性,但爬坡约束会限制相邻时段的灵活性变化幅度,此时储能装置替燃气轮机承担一部分灵活性供给,进行放电。当系统灵活性充裕时,储能装置更多处于充电状态,但储能装置受其功率约束的限制,提升灵活性能力依旧有限。灵活性供给模型 19 为S,=min(Pax-P,TR.)+min(Pa-Pr,5-E)maxS.,_=min(P-Pln,TR.

13、)一EES+min(pes-pes.minmin,T式中:S,、S,-I ES在t时刻的上行和下行灵活性供给;PGPGmaxminPG微型燃气轮机在t时刻的电功率;T调度时间间隔;R+R.微型燃气轮机爬坡和滑坡速率;PESXPESmaxminPFS储能装置t时刻充放能功率;EESEESmaxmin储能装置t时刻储能量。2.2IES灵活性需求偏差新能源出力不确定性会引起系统灵活性波动,对其安全稳定运行带来一定的风险。风光作为电源,若出力向上波动,系统则产生一定量的上行灵活性需求,当风光出力在一定时间内持续向上波动,即新能源当前时段的实际功率大于日前决策功率,系统内的燃气轮机和储能等灵活性设备因为

14、其爬坡的限制不能及时填补系统缺失的灵活性,系统内则会产生大量的灵活性不足,还会出现弃风、弃光现象;相反,若风光出力向下产生波动,系统则产生一定量的下行灵活性需求,当新能源出力在一定时间内持续产生向下的波动,即风光当前时段的实际功率小于日前决策功率,系统内的灵活性设备受到爬坡约束无法快速减少对系统的灵活性供给,则会导致风光资源利用不足。上海电力大学学报风光不确定性导致的这两种现象均对IES灵活性供需平衡产生巨大影响。同时,用户响应量会受到环境、心理和经济等诸多因素的影响。需求侧灵活响应资源作为负载,对系统灵活性上行和下行的影响与风光恰恰相反。当需求响应功率量向上波动,系统产生一些下行灵活性需求;

15、当需求响应功率量向下波动,系统则产生一些上行灵活性需求。因此需求侧响应不确定性引起的灵活性需求变化不可忽视。为量化风光不确定性和需T(1)E微型燃气轮机的电出力上限和下限值;储能装置充放能功率的上限和下限值;储能量上限和下限值;2023年求响应不确定性对系统灵活性需求的影响,对IES灵活性需求偏差进行量化,可描述为Ap*=A*+Ar.*LAp.-=A;+Ares-As,+=P,real-P,preLA;-=Pp,pre-PprelA,res,=Pres,real,式中:AD.+、A D-IES在t时刻的灵活性需求上行和下行偏差;A+A-t时刻需求响应不确定性引起的灵活性需求上行和下行偏差;Ar

16、es,-res,Ps,realP需求响应功率;t时段内转移电负荷量和中断电负荷量;热电转换系数;-t时段内可消减热负荷的功率量。不同调度时间段灵活性需求偏差示意如图2所示。则t时刻的灵活性需求偏差成本可定义为(6)Lc,(uA,-+ures,Ares,)(2)(3)al-Pres.pe(4)(5)新能源出力在时刻的波动引起的灵活性需求上行和下行偏差;-t时刻实际需求响应功率;需求响应功率日前预测值;新能源t时刻实际出力;新能源日前决策出力;赵鑫,等:计及灵活性需求偏差的综合能源系统分布鲁棒优化调度44,D+A110to图2 灵活性需求偏差示意式中:Cdov-IES灵活性需求偏差成本;ct、c

17、上行和下行偏差惩罚系数;u+、u 用户响应负荷的上行和下行偏差标志位(当Ps,realPs-pre时,u取1,u-取零;反之,u-取1,u+取零);,res,+res,-ure2.3IES灵活性需求模型能源运营商在较低系统灵活性时段来临前,将负荷转移到较高系统灵活性时段或者切断一些负荷,提高系统灵活性余量。灵活性需求定义为D.+=max(A,*,0)LD,=max(AD.-,O)PP=Pl-Prs式中:Dt,+、D,-t-t时刻IES的上行和下行灵活性需求;PP.Pf、Pr e s-t时刻功率需求量、电负荷和新能源电出力。当IES初始灵活性需求量等于调度时段末灵活性需求量,可表示为TP+Z(u

18、*A*+wAj+rAr*+t=1ure-Are-)=P式中:P一一初始功率需求量;429P调度时段末功率需求量。根据风光不确定性出力特性和用户需求侧响应不确定性负荷变化引起的灵活性需求偏差,可以建立计及灵活性需求偏差的IES灵活性供需平衡约束,描述为AE.+=S.+-D.+LAE,-=St,-D,-式中:E,+、Et,-t时刻IES的上行和下行灵活性余量。to+tfo+2t1新能源出力的上行和下行偏差标志位(当Pres.realPpres.pre 时,res,*取 1,res-取零;反之ures-取1,ures+取零)。(7)(8)(9)(10)E,,+、E,取值越大,表明灵活性供给能力越充足

19、;反之,则表明灵活性供给能力越匮乏。3IES两阶段分布鲁棒优化模型3.1目标函数3.1.1日前第1阶段目标函数日前第1阶段目标函数Fi为IES供能侧的运行成本,包括微型燃气轮机发电成本C和储能设备运维成本CES,为Tmin Fi=(co+Cfs)1=1微型燃气轮机发电成本为cg=a(P)2+bp+c式中:a、b、c 微燃机发电成本系数。储能装置运维成本为CES=cEs(PES.C+PES.d)式中:cEs储能装置充电放电功率单位成本系数;储能装置充电和放电功率。3.1.2日内第2 阶段目标函数日内第2 阶段的目标函数F,包括需求侧灵活响应成本C和灵活性需求偏差成本Cdev,为Tmin F,=Z

20、(c,-Cfv)t=1需求侧灵活响应成本为C=p(Plit+Prpdue+a Hrdace)(15)式中:p用户参与需求响应的补贴价格。3.2约束条件3.2.1需求响应约束可转移电负荷为Bet=e(11)(12)(13)(14)(16)430式中:ui二进制变量,表示参与转移电负荷状态;7shift总转移时间间隔;e,.-用户转移电负荷限定时间范围;-可转移负荷用户的转移额定功率。可中断电负荷为(18)preducePrduceminmax式中:APredac中断电负荷变化量;中断前电负荷;Preduce,Ppreducemax可削减热负荷为Tin,+=Tou,+(Tin,-Tou.,)e*c

21、+Tin,min Tin,Ti,max(Tin.,=Tin.,Oout,=Tou.式中:Tin,、T o u.t时段室内和室外温度;R-住宅建筑外部热阻;C室内空气比热容;削减热负荷量(可正可负),其值为正时加热、为负时制冷;可削减热负荷量上限值;Tin,mx inmin室内温度上限和下限;Tin,Tout.0初始时刻室内和室外温度。3.2.2日电网功率平衡约束电网功率平衡约束计算公式为P+Pr+PEs.d=PEB+PEs.c+Pl(21)式中:Prt时刻新能源电出力;PES.d,PES.t时刻储电装置放电和充电功率;-t时刻电锅炉消耗电功率;Pl1时刻电负荷。3.2.3热网功率平衡约束热网功

22、率平衡约束的计算公式为H+HEB+HEs.d=HEs.+H)式中:Ht时刻微型燃气轮机热功率;H-t时刻电锅炉热功率;-t时刻储热装置放热和充热上海电力大学学报pshiftemin可转移电负荷上限和下限功率量。(19)Imax(20)(22)2023年(17)功率;H-t时刻热负荷。其余系统内灵活性资源常规约束,如机组运行约束、储能运行约束和电锅炉约束详见文献 2 0。3.3两阶段DRO模型基于新能源和需求响应历史数据,建立两阶段DRO模型为KminF;(x)+maxZpr,)XeXPkE式中:x一一日前第1阶段变量;X一一日前第1阶段变量集合;Pk一第k个场景出现概率;一综合范数满足的模糊集

23、合;K一高-离散场景个数;-第k个场景下的第2 阶段变量;J日内第2 阶段变量;Y(x,5k)第k个场景下的日内第2 阶段变量;Y一第k个场景下日内第2 阶段变量集合;专第k个场景下DG出力和需求响应功率量。日前第1阶段约束条件为s.t.Cx c式中:C、c 一一-约束条件中对应第1阶段变量的矩阵或向量。日内第2 阶段的约束条件为Dykd,VkEyke,Vk式中;D、E、d、e 一约束条件中对应日内第2 阶段变量的矩阵或向量。采取场景概率驱动方法。首先,DG出力和需求响应功率量的数据样本在预测数据的基础上,利用拉丁超立方采样方法进行分层采样,误差服从正态分布,方差均值取零。预测值取2 0%,并

24、将 Cholesky 分解法作为相关性控制方法 2 1。针对风光和需求响应的M个实际历史场景,通过基于概率距离的场景削减技术,削减得出K个有限离散场景(如51,52,专3,,5k),以表征各个场景下的DG和需求响应功率,典型场景集合S=minF(x,yk,sk)ykEY(X,Ek)(23)(24)(25)(26)赵鑫,等:计及灵活性需求偏差的综合能源系统分布鲁棒优化调度Si,S,Ss,Skl,其中第k个典型场景S,包含M.个历史场景,继而构造不确定性变量的初始概率分布p=(pi,ps,P),其中pl=M/M(k=1,2,3,K),为第k个典型场景发生的概率。但初始概率分布p与实际概率分布p有所

25、不同,因此为保证场景概率分布的取值在合理范围内,采用综合范数模糊集 2 2,构建以上述初始概率分布为中心的综合范数约束,为=(pk|pk0,k=1,2,3,KK2P:=1Kk=1Lmax/Pk-pi/0.1kK式中:p一初始场景概率分布值;、。1-范数和-范数约束下的允许概率分布偏差限值。概率分布(Pk满足文献 2 3的置信度约束,为KPr/Z1Ipk-pa/0.l 1-2Kekk=1Pri max/px-p/0.1 1-2Ke1kK式中:Pr一概率。令不确定性概率置信水平和。分别等于1-2Ke-2Mo/K和1-2 Ke-2Mos/K,则在9 5%置信水平和式(2 8)的置信度约束条件下,保证

26、了模糊分布在给定集合内至少有9 5%的可能性存在。0 1和0。可根据式(2 9 进行计算 2 4,为K2K2Ml 1-1In2K2M1-式中:M一一历史数据样本个数。场景概率可以偏离初始场景概率的最大值,其值越大,鲁棒模型越保守;反之,则风险越大。4模型求解式(2 3)中的两阶段分布鲁棒调度问题为min-max-min 3层优化问题,不能直接求解,故采用列431与约束生成算法,将问题拆分为主问题(MasterProblem,MP)和子问题(Sub-Problem,SP)进行迭代求解。主问题求解过程中不考虑不确定变量,为确定性优化问题,求解子问题时向主问题添加辅助变量和约束条件,不断更新目标函数

27、的上界和下界,反复迭代直至收敛。4.1主问题MPMP是在场景概率分布已知的基础上,得出满足供能侧运行成本最优的最优解,为(27)MP:minxeX,yReY(x,5k),nKPkeQ1Vm=1,2,3,nCx cDyd,Vk,Vm=1,2,3,nEye,Vk,Vm=1,2,3,n式中:A一一第1阶段变量的系列矩阵;-2.M01B-L-不确定变量的系列矩阵;-2M00上标“*”一相应变量最优解;给定阅值;(28)N一送代次数。4.2子问题SP给定日前第1阶段变量x*后,对SP进行求解,为KSP:fsp(x*)=max)Pmin(Byk+Lsk),yReY(x,tk)Vm=1,2,3,n在子问题中

28、,由于外部最大值问题的场景概(29)率分布值不参与内部最小值问题,其与内部最小值问题的日内第2 阶段变量之间相互独立,故无需进行对偶转换,可将子问题分为两步进行并行求解 2 4 4.3求解流程第1步为求解子问题中内部最小值问题,第2步为求解子问题中外部最大值问题。数据驱动DRO求解流程如图3所示。Ax+min(Byk+Ls),yeY(X,Ek)(34)-第2 阶段变量的系列矩阵;(35)(30)(31)(32)(33)432常规约束条件计及灵活性,需求偏差灵活性供需平衡求解基于数据驱动的DRO模型设置日内第2 阶段成本上界UB=+o0,下界LB=-0,选代次数置1给定初始最劣场景概率分布,开始

29、送代求解主问题,得到日前第1阶段最优解,提供新下界LB求解子问题,得到最劣场景概率分布子问题目标函数值作为新上界UBUB-LB是否满足设定值?是停止迭代,得到日前第1阶段鲁棒可行的运行方案,求解日内第2 阶段变量结束图3类数据驱动DRO求解流程5算例分析5.1预测曲线与场景分析本文以某配电网实际数据为算例,调度周期为2 4h,步长为1h。风光、负荷和需求响应功率量预测曲线如图4和图5所示。样本数取50 0,削减后场景数为5。通过MATLAB2018a和Gurobi商业求解器进行求解。利用拉丁超立方采样,得到考虑相关性和不考虑相关性两种情况下的10 0 个场景。这里需求响应资源只选取可中断电负荷

30、和可削减热负荷进行分析,具体如图6 所示。上海电力大学学报900电负荷800热负荷开始光伏700凤电600风光出力、需求响应功率的历史样本数据拉丁超立方采样,相关性处理2023年MY/500盘40 03002001000图4风光、负荷预测曲线250可削减热负荷可中断电负荷200可转移电负荷(+)可转移电负荷(-)150MX/率100500-50W=W+1-1000向主问题增加辅助变量和约束条件45图5需求响应功率量预测454035(nd)/率302520151051454035(nd)/率3025201510501812时间/h1015时间/h工2345678曲线序号(a)考虑相关性23456

31、78曲线序号(b)不考虑相关性图 6 采样场景1620202425赵鑫,等:计及灵活性需求偏差的综合能源系统分布鲁棒优化调度其中,曲线序号1、2 为风电出力,曲线序号3、4为光伏出力,曲线序号5、6 为可中断电负荷功率,曲线序号7、8 为可削减热负荷功率。将风电功率减小至1/2 0,光伏功率减小至1/10,可中断电负荷功率减小至1/5。由图6(a)可以发现,当考虑相关性时,风光与需求响应功率之间正相关性,线条平滑且大部分接近平行;由图6(b)可知,在不考虑相关性的情况下,线条分布更加随机和无序。5.2IES运行结果及灵活性分析本文设置3种调度方案:方案1为用户不参与需求响应、不计及灵活性需求偏

32、差;方案2 为用户参与需求响应、不计及灵活性需求偏差;方案3为用户参与需求响应、计及灵活性需求偏差。对上述3种调度方案的运行成本进行分析,结果如表1所示。表13种方案的运行成本成本类型方案燃气轮机成本116 731.3215 020.9314 551.3由表1可知,相比于方案1,方案2 虽多支出1450元的需求响应调度费用,但是其余成本有所下降。这是由于利用供需灵活性减少峰谷差,从而降低了其他设备的调节成本。方案3比方案2多考虑了灵活性需求平衡,除了需求响应成本有所增加,其他成本都有减小,这是由于考虑风光波动,使新能源更加容易消纳,从而减小了系统的灵活性调整费用。总运行成本上,方案2 比方案3

33、高出40 7.2 元,进一步体现了计及灵活性需求偏差的方案3对于IES经济性的提升作用。为了研究灵活性需求偏差对IES灵活性的影响,对方案2 和方案3的IES灵活性供需进行分析,具体如图7 所示。由图7(a)可知,方案2 可以满足大部分时段的灵活性需求,这是因为需求响应的削峰填谷效果给系统提供了一定的灵活性。但在6:0 0 一7:00和2 0:0 0 2 3:0 0 时段出现了灵活性供不应求的现象,原因在于方案2 并未考虑分布式电源出力波动和需求响应造成的需求偏差,故灵活性设备未能在系统灵活性向上爬坡时提供额外贡献。从图7(b)可以发现,方案3的灵活性供给在433各个时段均满足灵活性需求,并且

34、留有一部分余量。因相较于方案2,方案3的灵活性供给因为日内阶段调度考虑了灵活性需求偏差,故相邻时段的灵活性爬坡更加平缓,爬坡功率量更加均衡地分配到每个调度时间段,对IES灵活性有较大的提升。400上行灵活性供给上行灵活性需求300网下行灵活性供给下行灵活性需求200MY/率1000-100-200-3000400单位:元上行灵活性供给上行灵活性需求300网下行灵活性供给下行灵活性需求储能设备与需求响购能成本应成本1 226.40955.31 450910.71 5575总运行200成本MY/率10017 957.7017 426.217 019.0101520时间/h(a)方案2-100-20

35、0-3000图7 IES灵活性供需5.3需求响应对IES灵活性的影响由于需求响应补贴价格会对负荷响应比例产生影响,响应比例会令系统内的灵活性产生变化。为帮助综合能源运营商确立合适的补贴价格,本文分析了不同补贴价格程度下IES灵活性余量,结果如图8 所示。由图8 可以看出,在不实行用户补贴策略时,微型燃气轮机和储能设备可以为系统提供必要的灵活性,但由于IES负荷量波动较小,常规负荷功率也较小,因此系统上行与下行灵活性始终大于零。用户侧响应资源内调节负荷的占比跟随补贴价格逐步提高,系统灵活性也得到提升。值得注意的是,当补贴价格为0.4元/kWh,系统上行和下行灵活性余量整体上提升最大。这表明设定合

36、理的补贴价格能够为IES灵活性提升做出贡献。251520510时间/h(b)方案3J25434上海电力大学学报2023年350300250M/率中2001501005005.4DRO模型保守性分析将不确定性置信水平和。分别等于0.5和0.9 9,分析不同历史数据样本数和削减的典型场景数对DRO模型保守性的影响程度。表2 为不同数据的历史样本数对模型保守性的影响。运行成本/元样本数燃气轮机储能设备与购能可转移电负荷可中断电负荷可削减热负荷50014 551.31 00014 250.92.00014 199.25.00014 115.8场景数燃气轮机储能设备与购能可转移电负荷可中断电负荷 可削减

37、热负荷514.551.31014.570.41514 606.72014 613.5由表3可知,随着场景数目增多,模型保守程度也在增加。这是由于随着削减典型场景数增多,削减后场景分辨率增大,提升了原本在众多样本数据中的极端恶劣场景数据成为典型场景的概率。总之,典型场景更能反映风光负荷的真实波动变化,显著提升模型的鲁棒性。补贴价格0.4元/kWh一补贴价格0.3元/kWh一补贴价格0.2 元/kWh补贴价格0.1元/kWh无补贴510时间/h(a)上行图8不同补贴价格下IES灵活性余量由表2 可以看出,随着样本数不断增加,IES内设备运行成本和IES灵活性需求偏差都在减少。这是因为历史数据样本数

38、量越大,其概率分布允许偏差值i和。缩小,能够提升DRO模型的保守程度。表3为削减后的典型场景数目对模型保守性的影响。表2 历史样本数分析910.7550843.5539843.5511841.0505表3典型场景数目分析运行成本/元910.7550.0913.5553.1914.4514.5917.3519.0250200F一补贴价格0.1元/kWh一无补贴MY/率150S100501520一补贴价格0.4元/kWh一补贴价格0.3元/kWh一补贴价格0.2 元/kWh2506776396146016776796806845.5同其他优化方法的对比分析为验证本文方法在较大规模系统中的适用性和可

39、行性,将本文所提出的DRO模型与传统两阶段鲁棒优化模型(RO)、随机优化模型(SO)进行对比分析。文中所提出的DRO模型的样本数M533030228728333033233634010时间/h(b)下行总运行成本/元17 019.016 574.416 454.716 345.8总运行成本/元17 019.017 048.017 051.617 073.81520灵活性需求偏差/kW49.245.841.341.3灵活性需求偏差/kW49.249.352.973.225赵鑫,等:计及灵活性需求偏差的综合能源系统分布鲁棒优化调度取50 0,削减场景数K为5,不确定性置信水平1和。分别取0.5和0

40、.9 9。上述3种模型的优化结果如表4所示。表4不同模型优化结果比较发电侧各设备用户侧响应资源原灵活性需求计算模型运行成本/元运行成本/元DRO15 862.0RO20 416.9SO15 459.4由表4可知,3种模型的发电侧各设备运行成本相差较大,用户侧响应资源成本相差较小。RO模型得出的优化结果中各部分费用和灵活性需求偏差最大,这是由于RO模型考虑了较多的最恶劣场景,保守程度更大。本文提出的DRO模型总运行成本明显高于SO模型,这是由于该模型调用了更多的供能侧和用户侧资源来消纳新能源和需求响应的不确定性。总之,本文所提的DRO模型结合了RO模型和SO模型两者的优越性,概率分布通过综合范数

41、模糊集构建,在一定保守性的基础上更加接近实际场景,同时保证了灵活性和经济性。同时,与RO模型相比,本文所提DRO模型的计算时间明显低于RO模型,这是由于在处理子问题时不需要做对偶处理,从而大幅提升了模型的计算效率。为进一步体现所提模型的优越性,将DRO模型与SO模型在总运行成本和灵活性需求偏差进行比较,结果如表5所示。表5两种模型总运行成本和灵活性需求偏差对比DROM总运行灵活性需求总运行灵活性需求成本/元偏差/kW50017419.0100016.974.42.00016 654.75.00016 345.8由表5可知,本文所提DRO模型的灵活性需求偏差和总运行成本始终大于SO模型,是由于S

42、O模型并未考虑产生最恶劣场景的概率分布,保守性较低。但随着历史数据样本数增加,DRO模型与 SO模型的运行结果趋于同一,表明DRO模型应对风险的调节能力很强,拥有较好的风险调节能力。4356结 论(1)在灵活性供需平衡中计及灵活性需求偏差后,可以显著提升IES的运行灵活性和经济性,并且上行和下行灵活性余量随着需求响应的补贴价格增加而增加。偏差/kW时间/s1 557.049.21 599.454.21 513.245.3SO成本/元偏差/kW49.216 882.841.316345.841.316 345.841.316 345.8(2)D R O 模型充分考虑了DG和需求响应3.718.4

43、53.6944.941.341.341.3的不确定性。当历史数据样本个数或典型场景数目越多,方案的经济性越好,保守程度越高。(3)D R O 模型可以改善鲁棒优化和随机优化的局限性和片面性,在一定程度上实现了经济性、鲁棒性和灵活性3方面的均衡。参考文献:1刘玉洁,袁旭峰,邹晓松,等.基于柔性多状态开关的分布式电源消纳技术评述 J.电测与仪表,2 0 2 2,59(7):1-8.2 SADEK S M,OMARAN W A,HASSAN M A M,et al.Datadriven stochastic energy management for isolated microgridsbased

44、 on generative adversarial networks considering reactivepower capabilities of distributed energy resources and reactivepower costsJ.IEEE Access,2021,9(1):5397-5411.3王王会超,秦昊,周昶,等.计及新能源预测不确定性的跨区域日前一日内调度模型 J.电力系统自动化,2 0 19,43(19):60-72.4 G U O ZJ,WEI W,CH EN L J,e t a l.D i s t r i b u t i o n s y s t

45、e moperation with renewables and energy storage:a linearprogramming based multistage robust feasibility approachJ.IEEE Transactions on Power Systems,2022,37(1):738-749.5董燕,杨俊林,朱永胜,等.基于零和博奔的电力系统鲁棒优化调度研究 J.电力系统保护与控制,2 0 2 2,50(5):55-64.6张亚超,黄张浩,郑峰,等.基于风电出力模糊集的电-气耦合系统分布鲁棒优化调度 J.电力系统自动化,2 0 2 0,44(4):44

46、-55.7DING T,YANG Q R,YANG Y H,et al.A data-drivenstochasticreactivepoweroptimizationconsideringuncertaintiesinactivedistributionnetworksand.decomposition method J.IEEE Transactions on SmartGrid,2018,9(5):4994-5004,8BAGHERIA,WANG J H,ZHAO C Y.Data-drivenstochastic transmission expansion planning J IE

47、EETransactions on Power Systems,2017,32(5):3461-3470.9郑晓东,陈皓勇,段声志,等.基于场景概率驱动的输电网和储能分布鲁棒规划 J:电力自动化设备,2 0 2 2,42(6:170-178.10 ZHAOCY,GUAN Y P.Data-driven stochastic unitcommitment for integrating wind generation J.IEEETransactions on Power Systems,2016,31(4):2587-2596.(下转第47 1 页)靳雍华,等:锅炉高效燃烧新疆高碱煤方法综述生

48、成与积灰特性的影响 J.洁净煤技术,2 0 2 2,2 8(4):42-50.【2 4康俊,刘彦.不同气氛下的准东煤煤灰沉积热力学研究J.杭州电子科技大学学报(自然科学版),2 0 2 1,41(6):76-81.25 SONG W,SONG G,QI X,et al.Speciation and distributionof sodium during zhundong coal gasification in a circulatingfluidized bedJ.Energy&Fuels,2017,31(2):1889-1895.26乌晓江,张翔,陈楠.高岭土对新疆高碱煤沾污结渣特性的影

49、响研究 J.锅炉技术,2 0 17,48(2):5-9.27张利孟,董信光,刘科,等.高岭土对准东煤结渣特性及矿物质演变的影响 J.燃料化学学报,2 0 15,43(10):117 6-1181.28 曾宪鹏,于敦喜,徐静颖,等.添加高岭土对准东煤燃烧PM_1生成影响的研究 J.工程热物理学报,2 0 15,36(11):2522-2526.2 9 刘义斌,张秀昌.掺混硅藻土、高岭土对新疆高钠煤沾污影响研究 J.技术与市场,2 0 2 1,2 8(5):40-42.【30 李成,李志清,杨建慧,等.准东煤掺烧煤研石安全性与经济性分析 J.工业加热,2 0 2 1,50(3):2 8-32.47

50、131 LI J,ZHU M,ZHANG Z,et al.The mineralogy,morphologyand sintering characteristics of ash deposits on a probe atdifferent temperatures during combustion of blends ofZhundong lignite and a bituminous coal in a drop tubefurnaceJ.Fuel Processing Technology,2016,149:176-186.32 RUAN R,TAN H,WANG X,et al

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服