ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:716.04KB ,
资源ID:2670003      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2670003.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(圆中最定值(1).doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆中最定值(1).doc

1、(完整版)圆中最定值(1)圆中最定值类型一、圆中将军饮马例1、如图,AB是O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是_1、已知圆O的面积为3,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点,则PC+CD的最小值为_2、如图,菱形ABCD中,A=60,AB=3,A、B的半径分别为2和1,P、E、F分别是边CD、A和B上的动点,则PE+PF的最小值是_ 类型二、折叠隐圆【基本原理】(一箭穿心)点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1、P2,则AP的最小

2、值为AP2,最大值为A P1例、如图4,在边长为2的菱形ABCD中,A=60,M是AD边的中点,N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,请求出AC长度的最小值 A在以M为圆心,AM为半径的圆上。 A在MC上时, AC最小。1、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB的最小值为_B在以O为圆心,OB为半径的圆上. B在OC上时, CB最小。2、四边形ABCD中,ADBC,A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将ABP

3、沿BP所在直线翻折得到QBP,则CQD的面积最小值为_类型三、 随动位似隐圆例、在RtABC中,ACB=90,BAC=30,BC=6点D是边AC上一点D且AD=2,将线段AD绕点A旋转得线段AD,点F始终为BD的中点,则将线段CF最大值为_分析:易知D轨迹为以A为圆心AD为半径的圆,则在运动过程中AD为定值2,故取AB中点G,则FG为中位线,FG=AD=,故F点轨迹为以G为圆心,为半径的圆。问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。思路2:倍长BC到B,则CF为BDB的中位线,CF= BD,当BD最大时,CF也取最大值,问题实质为D在圆A上运动至何处时,BD取最大. 【方法归纳】

4、、如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点点M运动轨迹为圆O2,且O2为AO1中点。、构造中位线1、如图,在RtABC中,ACB = 90,D是AC的中点,M是BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M是BD的中点),若AC = 4,BC = 3,那么在旋转过程中,线段CM长度的取值范围是_ 2、如图,ABC是边长为2的等边三角形,以AC为直径作半圆,P为半圆上任意一点,M为BP中点,则在点P由A到C运动过程中,点M运动路径长为_类型四、定性分析-垂线段最短例、如图,半圆O的半径为1,ACAB,BDAB,且AC=1,BD=3,P是半圆上任意一

5、点,则封闭图形ABDPC面积的最大值是_【分析】:思路1、连接CD、梯形ABCD面积为定值,要使封闭图形ABDPC面积取最大值,则使CPD面积取最小即可,CPD中,底边CD为定值,则当高取最小值时,面积有最小值,故问题变成当点P在圆上运动至何处时,点P到CD距离最小。C、D、O为定点,则点O到CD距离为定值,计算CD、OC、OD长,由勾逆知OCCD,设点P到CD距离为h,则h+rOC,hOC-r,即当O、P、M三点共线时,h有最小值,此时M与点C重合,故OC与圆O交点即为所求点P。思路2:P点的确定也可以这样想,平移CD,设平移后的直线为m,则直线m与CD间的距离即为CD边上的高,显然,当直线

6、m与圆O相切时,高h有最小值。 1、如图,P为圆O内一个定点,A为圆O上一个动点,射线AP,AO分别与圆O交于B,C两点,若圆O的半径为3,OP= ,则弦BC的最大值为_2、如图,AB为O的直径,C为半圆的中点,C的半径为2,AB=8,点P是直径AB上的一动点,PM与C切于点M,则PM的取值范围为_ 类型五、定弦定角【基本原理】如图1O中,A、B为定点,则AB为定弦,点C为优弧上任一点,在C点运动过程中则ACB的度数不变逆运用如图2、点A、B为定点,点C为线段AB外一点,且ACB=(为固定值)点C在以AB为弦的圆上运动(不与A、B重合) 图1 图2例、如图,AB为定长,点C为线段AB外一点,且

7、满足ACB=60度,请在图中画出点C的运动轨迹,简要说明作图步骤步骤1、_步骤2、_练习、1、如图,AB为定长,点C为线段AB外一点,且满足ACB=120度,请在图中画出点C的运动轨迹,并写出圆心角AOB=_2、如图,AB为定长,点C为线段AB外一点,且满足ACB=120度,请在图中画出点C的运动轨迹, 【实战应用】例、如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,ACAP交直线PB于点C,则ABC的最大面积是_1、如图,ABC是边长为2的等边三角形,D是边BC上的动点,BEAD于E,则CE的最小值为_2、如图,RtABC中,ABBC,AB=6,BC=4,P是ABC内部的一个动点,且

8、满足PAB=PBC,则线段CP长的最小值为_类型六、定弦定角反客为主例、如图,XOY = 45,一把直角三角尺ABC的两个顶点A、B分别在OX、OY上移动,其中AB = 10,那么点O到顶点A的距离最大值为_点O到AB的距离的最大值为_【分析】:题意中AB为定长线段在角的两边滑动,O为定点,滑动中C为动点,AB两点位置发生变化,点O到AB距离的最大值的确定有难度,若改变思路,借助物理中运动的相对性可知,若将ABC固定,将XOY的两边绕AB滑动,与原题中运动效果等价,题目中数量关系不会发生改变.问题则变为当点O在圆上运动至何处时,点O到AB距离最大.1、如图,D,E分别为等腰直角三角形ABC的边

9、AC、AB上的点,且DE=2 ,以DE为边向外作正方形DEFG,则AF的最大值为_2、如图,ABC中,ABC= 45,AC=2,半径为的圆O始终过A、C两点,连接OB,则线段OB长的的最大值为_ 类型七、定弦定角条件的确定例、如图,扇形AOD中,AOD=90,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQOD于点Q,点I为OPQ的内心,则当点P在弧AD上运动时,求I点运动路径长。分析:由内心的基本结论知 PIO=90o+PHO=135o为定角,但其所对的边OP并非定弦,连ID,易证 AIOOID,OID=PIO=135O,且其所对的边为OD,符合定弦定角条件,故I点轨迹为圆弧,问题

10、易解.1、如图,边长为3的等边ABC,D、E分别为边BC、AC上的点,且BDCE,AD、BE交于P点,则CP的最小值为_2、如图,AC3,BC5,且BAC90,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为( )类型八、隐切线例、已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当 ACB最大时,则点C的坐标为_分析:将 ACB看作以AB为弦的圆上的角,则圆心在AB的垂直平分线上,当圆心运动时, ACB的大小也随之改变,又因为点C为为y轴上的点,所以可将点C理解为圆O与y轴交点。Y轴与圆o的位置关系有两种:相交或相切,当圆O与y轴相交时,记交点

11、为C1,当圆O与y轴相切时,记交点为C,如图所示, AC1B= AC2B,由圆上的角大于圆外的角可知, ACB AC2B,故当圆O于y轴相切时, ACB有最大值.考虑对称性可知,点C的位置有两个,y轴正半轴和y轴负轴上各有一个点. 1、已知点A、B的坐标分别是(0,1)、(0,3),点C是x轴正半轴上一动点,当 ACB最大时,点C的坐标为_在RtABC中,BAC=30,斜边AB=,动点P在AB边上,动点Q在AC边上,且CPQ=90,则线段CQ长的最小值=_类型九、捆绑旋转例、已知A(2,0),B(5,0),点P为圆A上一动点,圆A半径为2,以PB为边作等边PMB,求线段AM的取值范围. 分析:

12、思路1:要求AM的取值范围,则先确定M点运动轨迹。由等边三角形联想共顶点的双等边结构,可构造和PBM共顶点B的等边ABH,则APBHBMHM=PA=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点。AM过圆心时取得相应最大和最小值。思路2:线段BM可看作由线段PB绕点B顺时针旋转60度得到,当点P在圆A上运动时,作出其绕点B顺时针旋转60度后的每一个对应点,则其应点的集合就是点M运动轨迹。显然其轨迹为圆.因为每个对应点都是点P绕点B顺时针旋转60度得到,所以点M所在圆的圆心即为将P点所在圆圆心A绕点B顺时针旋转60度得到.想象成钟摆绕点B顺时针旋转60度 1、如图,已知A(2,0),圆O

13、半径为1,点B为圆O上一动点,点C在第一象限,且ABC为等腰直角三角形,BAC=90度,求线段OC的最大值_2、如图,AB为O的直径,AB=4,点C为半圆AB上动点,以BC为边在O外作正方形BCDE,(点D在直线AB的上方)连接OD当点C运动时,则线段OD的最大值为_ 类型十、半径不确定的处理策略例、在ABC中,AB=4,BC=6,ACB=30,将ABC绕点B按逆时针方向旋转,得到A1BC1。点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,则线段EP1长度的最大值为_,最小值为_分析:显然BP=BP1,P1点轨迹为以B为圆心,BP为半径

14、的圆,半径是多少呢?好象无法确定,因为点P为AC上动点,则BP长度有最小值和最大值.如图当BP垂直AC时,半径最小,当P与C重合时,半径最大,由图可知P1点轨迹为以B为圆心的无数个同心圆。不难确定其最小值和最大值1、在ABC中,ACB=90,ABC=30,将ABC绕顶点C顺时针旋转,旋转角为(0180),得ABCE为AC的中点,AB中点为P,AC=4cm,则EP的最大值为_2、在ABC中,AB=AC=5,BC=6,将ABC绕点C顺时针方向旋转,得到A1B1C, 点E是BC上的中点,点F为线段AB上的动点,在ABC绕点C顺时针旋转过程中,点F的对应点是F1,请直接写出线段EF1长度的最大值与最小值的差12

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服