ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:365.21KB ,
资源ID:2669680      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2669680.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第二章行列式习题解答.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第二章行列式习题解答.doc

1、优质文档第二章 行列式习题解答 1.决定以下9级排列的逆序数,从而决定它们的奇偶性:1)134782695;解:,偶排列;2)217986354;解:,偶排列;3)987654321;解:,偶排列. 2.选择与使1)成偶排列;解:与一个为3,另一个为8,而是奇排列,由对换的性质因此有; 2)成奇排列.解:与一个为3,另一个为6,而是奇排列,因此有. 3.写出把排列变成排列的那些对换. 解:4.决定排列的逆序数,并讨论它的奇偶性.解:1与其他数构成个逆序,2与其他数构成个逆序,与其他数构成2个逆序,与构成1个逆序,故.当或(为正整数)时,排列为偶排列;当或(为正整数)时,排列为奇排列. 5.如果

2、排列的逆序数为,排列的逆序数是多少?解:中任意两个数码与必在而且仅在两个排列或中之一构成逆序,个数码中任取两个的不同取法有个,因此两个排列的逆序总数为,所以排列的逆序数为.6.在6级行列式中,这两项应带有什么符号?解:,因此项带正号;,因此项带正号. 7.写出四级行列式中所有带有负号并且包含因子的项.解:因为,因此所求的项为. 8.按定义计算行列式: 1); 2); 3).解:1)该行列式含有的非零项只有,带的符号为,值为,因此原行列式等于. 2)该行列式含有的非零项只有,带的符号为,值为,因此原行列式等于. 3)该行列式含有的非零项只有,带的符号为,值为,因此原行列式等于. 9.由行列式定义

3、证明:.证明:行列式的一般项为,列指标只能在1,2,3,4,5中取不同值,故中至少有一个要取3,4,5中之一,而从而每一项中至少包含一个零因子,故每一项的值均为零,因此行列式的值为零. 10.由行列式定义计算中与的系数,并说明理由.解:行列式元素中出现的次数都是1次的,因此含项每一行都要取含的,因此含项仅有,其系数为2,符号为正,的系数为2.类似的含项仅有,其系数为1,符号为负,的系数为. 11.由,证明:奇偶排列各半.证明:行列式每一项的绝对值为1,行列式的值为零,说明带正号项的个数等于带负号项的个数.由定义,当项的行指标按自然顺序排列时,项的符号由列指标排列的奇偶性所确定,奇排列时带负号,

4、偶排列带正号.因此奇偶排列各半.12.设,其中为互不相同的数.1)由行列式定义,说明是一个次多项式;2)由行列式性质,求的根.解:1)在行列式中只有第一行含有,出现最高次数为次,由为互不相同的数可得其系数不为零,因此是一个次多项式;2)用分别代,均出现了两行相同,因此行列式为0.即为的全部根. 13.计算下面的行列式: 1); 2); 3); 4); 5); 6). 解:1)该行列式中每行元素的和为1000的倍数,第2列与第三列相差100,因此可以先把第2列和第3列分别加到第1列,然后第2列减去第3列后可得. 3) 4).5)显然当或时均有两行元素相同,因此行列式为0.当时6). 14.证明:

5、证明: 15.算出下列行列式的全部代数余子式:1); 2).解:1).2) 16.计算下面的行列式 1) 17.计算下列级行列式:1); 2)3);4); 5).解 1)按第一列展开得 也可以按定义计算,非零项只有两项及值分别为和,符号分别为和,因此原行列式=2) 解:当时,行列式等于;当时原行列式;当时,从第二列起,每一列减去第一列得:原行列式=3)解:从第二列起,每一列都加到第一列然后提取因子得4)解:从第二行起每一行减去第一行,然后交换1,2两行后化为三角形得:.也可以除第2行外,每一行都减去第2行,然后化为三角形计算. 5) 解:从第2列起每一列都加到第1列,然后按第一列展开得到:.

6、18.证明: 1) 证明:从第2列起,每一列的倍加到第一列即可得:2.证明:当时结论显然成立,当时,第一行的加到第二行,然后第二行的加到第三行,依次类推可得:证法二:按最后一列展开即可得.证法三:按第一行展开再结合数学归纳法证明.证法四:从最后一行起,每一行乘以加到上一行,然后按第一行展开可得:3)解:原行列式按第一行展开得:.因此有,即是以为首项,以为公比的等比数列.因此有.类似有.当时,解得.证法二:按第一行展开找到递推关系,再结合数学归纳法加以证明.4)证明:对行列式的级数用第二数学归纳法证明.当时,因此结论成立.假设当级数小于时结论成立,对级行列式按最后一行展开得:由数学归纳法,结论成

7、立. 注意:因为主对角线上第一个元素为,其它主对角线上元素为,本行列式按第一行展开得到的低级数行列式与原行列式形式不同,无法得到与之间的递推关系,而按最后一行可得到递推关系. 5) 证明:从第二行起,每一行减去第一行先化为爪形行列式,再三角化 19.用克拉默法则解下列线性方程组: 1)2)3)4) 解:1)系数行列式故方程组的解为:2.故方程组的解为:3)故方程组的解为:4),20.设是数域中互不相同的数,是数域中任一组给定的数,用克拉默法则证明:存在唯一数域上的多项式使 证明:设,由得:把它看成关于的线性方程组,其系数行列式为一范德蒙德行列式,由互不相同可得系数行列式不为0,由克拉默法则,方程组解唯一,即满足的多项式唯一.21.设水银密度与温度的关系式为由实验测定得以下数据:t h13.6013.5713.5513.52求时水银密度(准确到小数2位).解:将实验数据代入关系式得:整理后得满足的方程组为:系数行列式.故当,当时,健康文档 放心下载 放心阅读人挪活树挪死

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服