1、Process Planning and Concurrent Engineering工艺规程制订与并行工程Process Planning and Concurrent EngineeringT. Ramayah and Noraini IsmailABSTRACTThe product design is the plan for the product and its components and subassemblies. To convert the product design into a physical entity, a manufacturing plan is nee
2、ded. The activity of developing such a plan is called process planning. It is the link between product design and manufacturing. Process planning involves determining the sequence of processing and assembly steps that must be accomplished to make the product. In the present chapter, we examine proce
3、ssing planning and several related topics.Process PlanningProcess planning involves determining the most appropriate manufacturing and assembly processes and the sequence in which they should be accomplished to produce a given part or product according to specifications set forth in the product desi
4、gn documentation. The scope and variety of processes that can be planned are generally limited by the available processing equipment and technological capabilities of the company of plant. Parts that cannot be made internally must be purchased from outside vendors. It should be mentioned that the ch
5、oice of processes is also limited by the details of the product design. This is a point we will return to later.Process planning is usually accomplished by manufacturing engineers. The process planner must be familiar with the particular manufacturing processes available in the factory and be able t
6、o interpret engineering drawings. Based on the planners knowledge, skill, and experience, the processing steps are developed in the most logical sequence to make each part. Following is a list of the many decisions and details usually include within the scope of process planning. .Interpretation of
7、design drawings. The part of product design must be analyzed (materials, dimensions, tolerances, surface finished, etc.) at the start of the process planning procedure. .Process and sequence. The process planner must select which processes are required and their sequence. A brief description of proc
8、essing steps must be prepared. .Equipment selection. In general, process planners must develop plans that utilize existing equipment in the plant. Otherwise, the component must be purchased, or an investment must be made in new equipment. .Tools, dies, molds, fixtures, and gages. The process must de
9、cide what tooling is required for each processing step. The actual design and fabrication of these tools is usually delegated to a tool design department and tool room, or an outside vendor specializing in that type of tool is contacted.Methods analysis. Workplace layout, small tools, hoists for lif
10、ting heavy parts, even in some cases hand and body motions must be specified for manual operations. The industrial engineering department is usually responsible for this area.Work standards. Work measurement techniques are used to set time standards for each operation. .Cutting tools and cutting con
11、ditions. These must be specified for machining operations, often with reference to standard handbook recommendations.Process planning for partsFor individual parts, the processing sequence is documented on a form called a route sheet. Just as engineering drawings are used to specify the product desi
12、gn, route sheets are used to specify the process plan. They are counterparts, one for product design, the other for manufacturing.A typical processing sequence to fabricate an individual part consists of: (1) a basic process, (2) secondary processes, (3) operations to enhance physical properties, an
13、d (4) finishing operations. A basic process determines the starting geometry of the work parts. Metal casting, plastic molding, and rolling of sheet metal are examples of basic processes. The starting geometry must often be refined by secondary processes, operations that transform the starting geome
14、try (or close to final geometry). The secondary geometry processes that might be used are closely correlated to the basic process that provides the starting geometry. When sand casting is the basic processes, machining operations are generally the second processes. When a rolling mill produces sheet
15、 metal, stamping operations such as punching and bending are the secondary processes. When plastic injection molding is the basic process, secondary operations are often unnecessary, because most of the geometric features that would otherwise require machining can be created by the molding operation
16、. Plastic molding and other operation that require no subsequent secondary processing are called net shape processes. Operations that require some but not much secondary processing (usually machining) are referred to as near net shape processes. Some impression die forgings are in this category. The
17、se parts can often be shaped in the forging operation (basic processes) so that minimal machining (secondary processing) is required.Once the geometry has been established, the next step for some parts is to improve their mechanical and physical properties. Operations to enhance properties do not al
18、ter the geometry of the part; instead, they alter physical properties. Heat treating operations on metal parts are the most common examples. Similar heating treatments are performed on glass to produce tempered glass. For most manufactured parts, these property-enhancing operations are not required
19、in the processing sequence.Finally finish operations usually provide a coat on the work parts (or assembly) surface. Examples included electroplating, thin film deposition techniques, and painting. The purpose of the coating is to enhance appearance, change color, or protect the surface from corrosi
20、on, abrasion, and so forth. Finishing operations are not required on many parts; for example, plastic molding rarely require finishing. When finishing is required, it is usually the final step in the processing sequence.Processing Planning for AssembliesThe type of assembly method used for a given p
21、roduct depends on factors such as: (1) the anticipated production quantities; (2) complexity of the assembled product, for example, the number of distinct components; and (3) assembly processes used, for example, mechanical assembly versus welding. For a product that is to be made in relatively smal
22、l quantities, assembly is usually performed on manual assembly lines. For simple products of a dozen or so components, to be made in large quantities, automated assembly systems are appropriate. In any case, there is a precedence order in which the work must be accomplished. The precedence requireme
23、nts are sometimes portrayed graphically on a precedence diagram.Process planning for assembly involves development of assembly instructions, but in more detail .For low production quantities, the entire assembly is completed at a single station. For high production on an assembly line, process plann
24、ing consists of allocating work elements to the individual stations of the line, a procedure called line balancing. The assembly line routes the work unit to individual stations in the proper order as determined by the line balance solution. As in process planning for individual components, any tool
25、s and fixtures required to accomplish an assembly task must be determined, designed, built, and the workstation arrangement must be laid out.Make or Buy DecisionAn important question that arises in process planning is whether a given part should be produced in the companys own factory or purchased f
26、rom an outside vendor, and the answer to this question is known as the make or buy decision. If the company does not possess the technological equipment or expertise in the particular manufacturing processes required to make the part, then the answer is obvious: The part must be purchased because th
27、ere is no internal alternative. However, in many cases, the part could either be made internally using existing equipment, or it could be purchased externally from a vendor that process similar manufacturing capability.In our discussion of the make or buy decision, it should be recognized at the out
28、set that nearly all manufactures buy their raw materials from supplies. A machine shop purchases its starting bar stock from a metals distributor and its sand castings from a foundry. A plastic molding plant buys its molding compound from a chemical company. A stamping press factory purchases sheet
29、metal either fro a distributor or direct from a rolling mill. Very few companies are vertically integrated in their production operations all the way from raw materials, it seems reasonable to consider purchasing at least some of the parts that would otherwise be produced in its own plant. It is pro
30、bably appropriate to ask the make or buy question for every component that is used by the company.There are a number of factors that enter into the make or buy decision. One would think that cost is the most important factor in determining whether to produce the part or purchase it. If an outside ve
31、ndor is more proficient than the companys own plant in the manufacturing processes used to make the part, then the internal production cost is likely to be greater than the purchase price even after the vendor has included a profit. However, if the decision to purchase results in idle equipment and
32、labor in the companys own plant, then the apparent advantage of purchasing the part may be lost. Consider the following example make or Buy Decision.The quoted price for a certain part is $20.00 per unit for 100 units. The part can be produced in the companys own plant for $28.00. The components of
33、making the part are as follows: Unit raw material cost = $8.00 per unit Direct labor cost =6.00 per unit Labor overhead at 150%=9.00 per unit Equipment fixed cost =5.00 per unit _ Total =28.00 per unitShould the component by bought or made in-house?Solution: Although the vendors quote seems to favor
34、 a buy decision, let us consider the possible impact on plant operations if the quote is accepted. Equipment fixed cost of $5.00 is an allocated cost based on investment that was already made. If the equipment designed for this job becomes unutilized because of a decision to purchase the part, then
35、the fixed cost continues even if the equipment stands idle. In the same way, the labor overhead cost of $9.00 consists of factory space, utility, and labor costs that remain even if the part is purchased. By this reasoning, a buy decision is not a good decision because it might be cost the company a
36、s much as $20.00+$5.0+$9.00=$34.00 per unit if it results in idle time on the machine that would have been used to produce the part. On the other hand, if the equipment in question can be used for the production of other parts for which the in-house costs are less than the corresponding outside quot
37、es, then a buy decision is a good decision.Make or buy decision are not often as straightforward as in this example. A trend in recent years, especially in the automobile industry, is for companies to stress the importance of building close relationships with parts suppliers. We turn to this issue i
38、n our later discussion of concurrent engineering.Computer-aided Process PlanningThere is much interest by manufacturing firms in automating the task of process planning using computer-aided process planning (CAPP) systems. The shop-trained people who are familiar with the details of machining and ot
39、her processes are gradually retiring, and these people will be available in the future to do process planning. An alternative way of accomplishing this function is needed, and CAPP systems are providing this alternative. CAPP is usually considered to be part of computer-aided manufacturing (CAM). Ho
40、wever, this tends to imply that CAM is a stand-along system. In fact, a synergy results when CAM is combined with computer-aided design to create a CAD/CAM system. In such a system, CAPP becomes the direct connection between design and manufacturing. The benefits derived from computer-automated proc
41、ess planning include the following:.Process rationalization and standardization. Automated process planning leads to more logical and consistent process plans than when process is done completely manually. Standard plans tend to result in lower manufacturing costs and higher product quality. .Increa
42、sed productivity of process planner. The systematic approach and the availability of standard process plans in the data files permit more work to be accomplished by the process planners.Reduced lead time for process planning. Process planner working with a CAPP system can provide route sheets in a s
43、horter lead time compared to manual preparation. .Improved legibility. Computer-prepared rout sheets are neater and easier to read than manually prepared route sheets. .Incorporation of other application programs. The CAPP program can be interfaced with other application programs, such as cost estim
44、ating and work standards.Computer-aided process planning systems are designed around two approaches. These approaches are called: (1) retrieval CAPP systems and (2) generative CAPP systems .Some CAPP systems combine the two approaches in what is known as semi-generative CAPP.Concurrent Engineering a
45、nd Design for ManufacturingConcurrent engineering refers to an approach used in product development in which the functions of design engineering, manufacturing engineering, and other functions are integrated to reduce the elapsed time required to bring a new product to market. Also called simultaneo
46、us engineering, it might be thought of as the organizational counterpart to CAD/CAM technology. In the traditional approach to launching a new product, the two functions of design engineering and manufacturing engineering tend to be separated and sequential, as illustrated in Fig.(1).(a).The product
47、 design department develops the new design, sometimes without much consideration given to the manufacturing capabilities of the company, There is little opportunity for manufacturing engineers to offer advice on how the design might be alerted to make it more manufacturability. It is as if a wall ex
48、its between design and manufacturing. When the design engineering department completes the design, it tosses the drawings and specifications over the wall, and only then does process planning begin.Fig.(1). Comparison: (a) traditional product development cycle and (b) product development using concu
49、rrent engineeringBy contrast, in a company that practices concurrent engineering, the manufacturing engineering department becomes involved in the product development cycle early on, providing advice on how the product and its components can be designed to facilitate manufacture and assembly. It also
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100