1、 焊接工艺学教案 第一章 焊接技术概论一、教学目的和要求1.掌握焊接的定义、分类及优缺点。2.掌握防止触电及防止火灾、爆炸、中毒、辐射及特殊环境焊接的安全技术措施。3.理解焊接安全生产的重要性和焊接劳动保护措施。4. 了解国内外焊接技术发展与应用概况。二、教学难点、重点1.焊接的定义、分类及优缺点。2.防止触电及防止火灾、爆炸、中毒、辐射及特殊环境焊接的安全技术措施。三、学时分配章节名称学时合计1-1概述261-2焊接安全技术与劳动保护4四、教材分析与参考 1-1概述1.金属连接的方式在金属结构和机器的制造中,经常需要用一定的连接方式将两个或两个以上的零件按一定形式和位置连接起来。金属连接方式
2、可分为两大类:一类是可拆卸连接,即不必毁坏零件(连接件、被连接件)就可以拆卸,如螺栓连接、键和销连接等。另一类是永久性连接,也称不可拆卸连接,其拆卸只有在毁坏零件后才能实现,如铆接、焊接和粘接等。需要注意的是,有些教材将拆卸时仅连接件毁坏而被连接件不毁坏的连接情况也归纳为可拆卸的连接,如铆接。而将连接件和被连接件全部毁坏后才能实现拆卸的连接方式称为永久性连接。通常可拆卸连接不用于制造金属结构,而用于零件的装配和定位;永久性连接通常用于金属结构或零件的制造中。2焊接的定义焊接就是通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到结合的一种加工工艺方法。由此可见,焊接最本质的特点就是通过
3、焊接使焊件达到结合,从而将原来分开的物体形成永久性连接的整体。要使两部分金属材料达到永久连接的目的,就必须使分离的金属相互非常接近,使之产生足够大的结合力,才能形成牢固的接头。这对液体来说是很容易的,而对固体来说则比较困难,需要外部给予很大的能量如电能、化学能、机械能、光能、超声波能等,这就是金属焊接时必须采用加热、加压或两者并用的原因。3焊接分类按照焊接过程中金属所处的状态不同,可以把焊接方法分为熔焊、压焊和钎焊三类。熔焊是在焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法。目前熔焊应用最广,常见的气焊、电弧焊、电渣焊、气体保护电弧焊等属于熔焊。压焊是在焊接过程中,必须对焊件施加
4、压力(加热或不加热),以完成焊接的方法。如电阻焊、摩擦焊、气压焊、冷压焊、爆炸焊等属于压焊。钎焊是采用比母材熔点低的钎料作填充材料,焊接时将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法。常见的钎焊方法有烙铁钎焊、火焰钎焊等。4焊接的特点焊接与铆接、铸造相比,可以节省大量金属材料,减轻结构的重量,成本较低;简化加工与装配工序,工序较简单,生产周期较短,劳动生产率高;焊接接头不仅强度高,而且其他性能(如耐热性能、耐腐蚀性能、密封性能)都能与焊件材料相匹配,焊接质量高;劳动强度低,劳动条件好等优点。焊接的主要缺点是产生焊接应力
5、与变形,焊接中存在一定数量的缺陷,产生有毒有害的物质等。目前世界各国年平均生产的焊接结构用钢已占钢产量的45%左右,所以焊接是目前应用极为广泛的一种永久性连接方法。5焊接技术发展史近代焊接技术,是从1885年出现碳弧焊开始,直到二十世纪四十年代才形成较完整的焊接工艺体系。特别是四十年代初期出现了优质电焊条后,焊接技术得到了一次飞跃。现在世界上已有50余种焊接工艺方法应用于生产中。焊接方法的发展简史见表11所示。表11 焊接方法的发展简史焊接方法发明年代发明国家焊接方法发明年代发明国家碳弧焊1885原苏联冷压焊1948英国电阻焊1886美国高频电阻焊1951美国金属极电弧焊1892原苏联电渣焊1
6、951原苏联热剂焊1895德国CO2气体保护电弧焊1953美国氧乙炔焊1901法国超声波焊1956美国金属喷镀1909瑞士电子束焊1956法国原子氢焊1927美国摩擦焊1957原苏联高频感应焊1928美国等离子弧焊1957美国惰性气体保护电弧焊1930美国爆炸焊1963美国埋弧焊1935美国激光焊1965美国6焊接技术的新发展随着工业和科学技术的发展,焊接技术也在不断进步,焊接已从单一的加工工艺发展成为综合性的先进工艺技术。焊接技术的新发展主要体现在以下几个方面:(1)提高焊接生产率,进行高效化焊接焊条电弧焊中的铁粉焊条、重力焊条和躺焊条工艺;埋弧焊中的多丝焊、热丝焊、窄间隙焊接;气体保护电弧
7、焊中的气电立焊、热丝MAG焊、TIME焊等,是常用的高效化焊接方法。(2)提高焊接过程自动化、智能化水平国外焊接过程机械化、自动化已达很高程度,而我国手工焊接所占比例却很大。按焊丝与焊接材料的比来计算机械化、自动化比例,1999年日本为80,西欧为74,美国为71,2000年我国为23。焊接机器人的应用是提高焊接过程自动化水平的有效途径,应用焊接专家系统、神经网络系统等都能提高焊接过程智能化水平。(3)研究开发新的焊接热源焊接工艺几乎运用了世界上一切可以利用的热源,如火焰、电弧、电阻、激光、电子束等。但新的更好的更有效的焊接热源研发一直在进行,例如采用两种热源的叠加,以获得更强的能量密度,如等
8、离子束加激光、电弧中加激光等。1-2焊接安全技术与劳动保护1焊接安全生产的重要性 焊工在焊接时要与电、可燃及易爆的气体、易燃液体、压力容器等接触,焊接时会产生一些因素如有害气体、金属蒸气、烟尘、电弧辐射、高频磁场、噪声和射线等,有时还要在高处、水下、容器设备内部等特殊环境作业。所以,焊接生产中存在一些危险因素,如触电、灼伤、火灾、爆炸、中毒、窒息等,因此必须重视焊接安全生产。国家有关标准明确规定,金属焊接(气割)作业是特种作业,焊工是特种作业人员。特种作业人员,须进行培训并经考试合格后,方可上岗作业。2预防触电 触电是焊接操作的主要危险因素,我国目前生产的焊条电弧焊机的空载电压限制在90V以下
9、,工作电压为2540V;自动电弧焊机的空载电压为7090V;电渣焊机的空载电压一般是4065V;氩弧焊、CO2气体保护电弧焊机的空载电压是65V左右;等离子弧切割机的空载电压高达300450V;所有焊机工作的网路电压为380V220V,50Hz的交流电,都超过安全电压(一般干燥情况为36V、高空作业或特别潮湿场所,为12V),因此触电危险是比较大的,必须采取措施预防触电。(1)电流对人体的危害电流对人体的危害有电击、电伤和电磁场生理伤害三种类型电击是指电流通过人体内部,破坏心脏、肺部或神经系统的功能,通常称为触电。触电事故基本上是电击,绝大部分触电事故是由电击造成的。电伤是指加热工件的火星飞溅
10、到皮肤上引起的烧伤。电磁场生理伤害是指在高频电磁场作用下,使人产生头晕、乏力、记忆力衰退、失眠多梦等神经系统的症状。(2)焊接操作造成触电原因触电可分为直接触电和间接触电,直接触电是直接触及焊接设备正常运行时的带电体或靠近高压电网和电气设备而发生触电。间接触电是触及意外带电体(正常时不带电,因绝缘损坏或电气设备发生故障而带电的导体)而发生触电。1)直接触电在更换焊条、电极和焊接过程中,焊工的手或身体某部接触到焊条、焊钳或焊枪的带电部分,而脚或身体其他部位与地或工件间无绝缘保护。但焊工在金属容器、管道、锅炉或金属结构内部施工,或当人体大量出汗,或在阴雨天、潮湿地方焊接时,特别容易发生这种触电事故
11、。在接线、调节焊接电流和移动焊接设备时,手或身体某部接触到接线柱等带电体而触电在高处焊接作业时触及低压线路或靠近高压网路引起的触电事故。2)间接触电焊接设备的绝缘烧损、振动或机械损坏伤,使绝缘损坏部位碰到机壳,而人碰到机壳引起触电。焊机的火线和零线接错,使外壳带电而触电。焊接操作时人体碰上了绝缘损坏的电缆、胶木电闸带电部分而触电。3预防火灾和爆炸焊接时,电弧及气体火焰的温度很高并有大量的金属火花飞溅物,而且在焊接过程中还会与可燃及易爆的气体、易燃液体、可燃的粉尘或压力容器等接触,都有可能引起火灾甚至爆炸。因此焊工在工作时,必须防止火灾及爆炸事故的发生。(1)可燃气体的爆炸工业上大量使用的可燃气
12、体,如乙炔、天然气等,与氧气或空气均匀混合达到一定限度,遇到火源便会发生爆炸。这个限度称为爆炸极限,常用可燃气在混合物中所占的体积分数来表示。例如,乙炔与空气混合爆炸极限为2.281, 乙炔与氧气混合爆炸极限为2.893,丙烷或丁烷与空气混合爆炸极限分别为2.19.5和1.558.4。(2)可燃液体的爆炸在焊接场地或附近放有可燃液体时,可燃液体或可燃液体蒸汽达到一定浓度,遇到焊接火花就会发生爆炸,如汽油蒸汽与空气混合的爆炸极限为0.76。(3)可燃粉尘的爆炸可燃粉尘如镁、铝粉尘、纤维素粉尘等,悬浮于空气中,达到一定浓度范围,遇到焊接火花也会发生爆炸。(4)密闭容器的爆炸对密闭容器或受压容器焊接
13、时,如不采取适当措施(如卸压)也会产生爆炸。4焊接过程中的有害因素焊接过程中产生的有害因素是有害气体、焊接烟尘、电弧辐射、高频磁场、噪声和射线等。各种焊接方法焊接过程中产生的有害因素见表12所示。表12焊接过程中的有害因素焊接方法有害因素弧光辐射高频电磁场焊接烟尘有害气体金属飞溅射线噪声酸性焊条电弧焊轻微中等轻微轻微碱性焊条电弧焊轻微强烈轻微中等高效铁粉焊条电弧焊轻微最强烈轻微轻微碳弧气刨轻微强烈轻微轻微电渣焊轻微埋弧焊中等轻微实心细丝CO2焊轻微轻微轻微轻微实心粗丝CO2焊中等中等轻微中等钨极氩弧焊(铝、铁、铜、镍)中等中等轻微中等轻微轻微钨极氩弧焊(不锈钢)中等中等轻微轻微轻微轻微熔化极氩
14、弧焊(不锈钢)中等轻微中等轻微(1)焊接烟尘焊接金属烟尘的成份很复杂,焊接黑色金属材料时,烟尘的主要成份是铁、硅、锰。焊接其他金属材料时,烟尘中尚有铝、氧化锌、钼等。其中主要有毒物是锰,使用碱性低氢型焊条时,烟尘中含有极毒的可溶性氟。焊工长期呼吸这些烟尘,会引起头痛、恶心,甚至引起焊工尘肺及锰中毒等。(2)有害气体在各种熔焊过程中,焊接区都会产生或多或少的有害气体。特别是电弧焊中在焊接电弧的高温和强烈的紫外线作用下,产生有害气体的程度尤甚。所产生的有害气体主要有臭氧、氮氧化物、一氧化碳和氟化氢等。这些有害气体被吸入体内,会引起中毒,影响焊工健康。排出烟尘和有害气体的有效措施是加强通风和加强个人
15、防护,如带防尘口罩、防毒面罩等。(3)弧光辐射弧光辐射包括可见光、红外线和紫外线。过强的可见光耀眼眩目;红外线会引起眼部强烈的灼伤和灼痛,发生闪光幻觉;紫外线对眼睛和皮肤有较大的刺激性,引起电光性眼炎。在各种明弧焊、保护不好的埋弧焊等都会形成弧光辐射。弧光辐射的强度与焊接方法、工艺参数及保护方法等有关,CO2焊弧光辐射的强度是焊条电弧焊的23倍,氩弧焊是焊条电弧焊的510倍,而等离子弧焊割比氩弧焊更强烈。为了防护弧光辐射,必须根据焊接电流来选择面罩中的电焊防护玻璃,玻璃镜片遮光号的选用如表13所示。表13玻璃镜片遮光号的选用焊接、切割方法镜片遮光号焊接电流(A)3030757520020040
16、0电弧焊56788101112碳弧气刨10111214焊接辅助工34(4)高频电磁场当交流电的频率达到每秒振荡1030000万次时,它的周围形成高频率的电场和磁场称为高频电磁场。等离子弧焊割、钨极氩弧焊采用高频振荡器引弧时,会形成高频电磁场。焊工长期接触高频电磁场,会引起神经功能紊乱和神经衰弱。防止高频电磁场的常用方法是将焊枪电缆和地线用金属编织线屏蔽。(6)射线射线主要是指等离子弧焊割、钨极氩弧焊的钍产生放射线和电子束焊对的X射线。焊接过程中放射线影响不严重,钍钨极一般被铈钨极取代,电子束焊的X射线防护主要以屏蔽以减少泄漏。(7)噪声在焊接过程中,噪声危害突出的焊接方法是等离子弧割、等离子喷
17、涂以及碳弧气刨,其噪声声强达120130dB以上,强烈的噪声可以引起听觉障碍、耳聋等症状。防噪声的常用方法是带耳塞和耳罩。5焊接劳动保护焊接劳动保护是指为保障焊工在焊接生产过程中的安全和健康所采取的措施。焊接劳动保护应贯穿于整个焊接过程中。加强焊接劳动保护的措施主要应从两方面来控制:一是从采用和研究安全卫生性能好的焊接技术及提高焊接机械化、自动化程度方面着手;二是加强焊工的个人防护。推荐选用的安全卫生性能好的焊接技术措施如表14所示。表14安全卫生性能好的焊接技术措施目的措施全面改善安全卫生条件1)提高焊接机械化、自动化水平2)对重复性生产的产品,设计程控焊接生产线3)采用各种焊接机械手和机器
18、人取代手工焊,以消除焊工触电的危险和电焊烟尘危害1)优先选用安全卫生性能好的埋弧焊等自动焊方法2)对适宜的焊接结构采用高效焊接方法3)选用电渣焊避免焊工进入狭窄空间焊接,以减少焊工触电和电焊烟尘对焊工的危害1)对薄板和中厚板的封闭和半封闭结构,应优先采取利用各类衬垫的埋弧焊单面焊双面成型工艺2)创造条件,采用平焊工艺3)管道接头,采用单面焊双面成型工艺避免焊条电弧焊触电每台焊机应安装防电击装置降低氩弧焊的臭氧发生量在氩气中加入0.3的一氧化碳,可使臭氧发生量降低90降低等离子切割的烟尘和有害气体1)采用水槽式等离子切割工作台2)采用水弧等离子切割工艺降低电焊烟尘1)采用发尘量较低的焊条2)采用
19、发尘量较低的焊丝第二章 气焊与气割一、教学目的和要求1.掌握氧、乙炔的性质和氧乙炔焰的分类、特点及应用,了解液化石油气的性质以及焊丝、焊剂的牌号及适用范围。2.理解单级反作用式减压器、射吸式焊割炬的结构、型号和工作原理。3.掌握气割原理及条件,理解气割与气焊工艺参数的选择以及对气割气焊质量的影响。4.掌握产生回火的根本原因及操作中造成回火的具体因素。5.了解常用机械气割机的型号和先进气割技术。二、教学难点、重点1.气割原理、条件及气割与气焊工艺参数的选择。2.单级反作用式减压器、射吸式焊割炬的结构、型号和工作原理。3.氧乙炔焰的分类和特点。三、学时分配章节名称学时合计21 气体火焰21622
20、气焊82-3气割6四、教材分析与参考 2-1 气体火焰气焊与气割是利用可燃气体与助燃气体混合燃烧产生的气体火焰作为热源,进行金属材料的焊接或切割的一种加工工艺方法。可燃气体有乙炔、液化石油气等,助燃气体是氧气。1氧气在常温和标准大气压下,氧气是一种无色、无味、无毒的气体,氧气的分子式为O2,氧气的密度是1.429kg/m3,比空气略重(空气为1.293 kg/m3)。氧气本身不能燃烧,但能帮助其它可燃物质燃烧。氧气的化学性质极为活泼,它几乎能与自然界一切元素(除惰性气体外)相化合,这种化合作用被为氧化反应,剧烈的氧化反应称为燃烧。氧气的化合能力是随着压力的加大和温度的升高而增加。因此当工业中常
21、用的高压氧气,如果与油脂等易燃物质相接触时,就会发生剧烈的氧化反应而使易燃物自行燃烧,甚至发生爆炸。因此在使用氧气时,切不可使氧气瓶瓶阀、氧气减压器、焊炬、割炬、氧气皮管等沾染上油脂。气焊与气割用的工业用氧气按纯度一般分为两级,一级纯度氧气含量不低于99.2%,二级纯度氧气含量不低于98.5%。一般情况下,由氧气厂和氧气站供应的氧气可以满足气焊与气割的要求。对于质量要求较高的气焊应采用一级纯度的氧。气割时,氧气纯度不应低于98.5%。2乙炔在常温和标准大气压下,乙炔是一种无色而带有特殊臭味的碳氢化合物,其分子式为C2H2。乙炔的密度是1.179kg/m3,比空气轻。乙炔是可燃性气体,它与空气混
22、合时所产生的火焰温度为2350C,而与氧气混合燃烧时所产生的火焰温度为3000C3300C,因此足以迅速熔化金属进行焊接和切割。乙炔是一种具有爆炸性的危险气体,当压力在0.15MPa时,如果气体温度达到580 600C,乙炔就会自行爆炸。压力越高,乙炔自行爆炸所需的温度就越低;温度越高,则乙炔自行爆炸的压力就越低。乙炔与空气或氧气混合而成的气体也具有爆炸性,乙炔的含量(按体积计算)在2.281%范围内与空气形成的混合气体,以及乙炔的含量(按体积计算)在2.893%范围内与氧气形成的混合气体,只要遇到火星就会立刻爆炸。乙炔与铜或银长期接触后会生成一种爆炸性的化合物,即乙炔铜(Cu2C2)和乙炔银
23、(Ag2C2),当它们受到剧烈震动或者加热到110C 120C就会引起爆炸。所以凡是与乙炔接触的器具设备禁止用银或纯铜制造,只准用含铜量不超过70%的铜合金制造。乙炔和氯、次氯酸盐等化合会发生燃烧和爆炸,所以乙炔燃烧时,绝对禁止用四氯化碳来灭火。乙炔爆炸时会产生高热,特别是产生高压气浪,其破坏力很强,困此使用乙炔时必须要注意安全。乙炔能大量溶解于丙酮溶液中,利用这个特性,可将乙炔装入盛有丙酮和多孔性物质的乙炔瓶内储存、运输和使用。3液化石油气液化石油气是油田开发或炼油厂裂化石油的副产品,其主要成分是丙烷(C3H8),大约占5080%,其余是丁烷(C4H10)、丙烯(C3H6)等碳氢化合物。在常
24、温和标准大气压下,液化石油气是一种略带臭味的无色气体,液化石油气的密度为1.8 2.5kg/m3,比空气重。如果加上0.81.5MPa的压力,就变成液态,便于装入瓶中储存和运输,液化石油气由此而得名。液化石油气与乙炔一样,也能与空气或氧气构成具有爆炸性的混合气体,但具有爆炸危险的混合比值范围比乙炔小得多。它在空气中爆炸范围为3.516.3%(体积),同时由于燃点比乙炔高(500C左右,乙炔为305C),因此,使用时比乙炔安全得多。目前,国内外已把液化石油气作为一种新的可燃气体来逐渐代替乙炔,广泛地应用于钢材的气割和低熔点的有色金属焊接中,如黄铜焊接、铝及铝合金焊接和铅的焊接等。4其他可燃气体随
25、着工业的发展,人们在探索各种各样的乙炔代用气体,目前作为乙炔代用气体中液化石油气(主要是丙烷)用量最大。此外还有丙烯、天然气、焦炉煤气、氢气以及丙炔、丙烷与丙烯的混合气体,乙炔与丙烯的混合气体,乙炔与丙烷的混合气体,乙炔与乙烯的混合气体等。还有以丙烷、丙烯、液化石油气为原料,再辅以一定比例的添加剂的气体。另外汽油经雾化后也可作为可燃气体。根据使用效果、成本、气源情况等综合分析,液化石油气(主要是丙烷)是比较理想的代用气体。5氧乙炔焰根据氧与乙炔混合比不同,可得到性质不同的中性焰、碳化焰和氧化焰。(1)中性焰中性焰是氧与乙炔混合比为1.1:1.2时燃烧所形成的火焰。中性焰燃烧后的气体中既无过剩氧
26、,也无过剩的乙炔。在焰心的外表面分布着乙炔分解所生成的碳微粒层,因受高温而使焰心形成光亮而明显的轮廓;在内焰处,乙炔和氧气燃烧生成的一氧化碳及氢气形成还原气氛,在与熔化金属相互作用时,能使氧化物还原。中性焰的最高温度在距焰心24mm处,约为3050 3150C。用中性焰焊接时主要利用内焰这部分火焰加热焊件。(2)碳化焰碳化焰是氧与乙炔的混合比小于1.1时燃烧所形成的的火焰。火焰中含有游离碳,具有较强的还原作用,也有一定的渗碳作用。碳化焰整个火焰比中性焰长,碳化焰中有过剩的乙炔,并分解成游离状态的碳和氢,碳渗到熔池中使焊缝的含碳量增加,塑性下降;氢进入熔池使焊缝产生气孔和裂纹。碳化焰的最高温度为
27、27003000C。(3)氧化焰氧化焰是氧与乙快的混合比大于 1.2 时燃烧所形成的火焰。氧化焰中有过剩的氧,具有氧化性,火焰的氧化反应剧烈 ,火焰较短,内焰和外焰层次不清 。氧化焰最高温度为 31003300 。6氧液化石油气火焰氧液化石油气火焰的构造,同氧乙快火焰基本一样,也分为氧化焰、碳化焰和中性焰三种。其焰心也有部分分解反应,不同的是焰心分解产物较少,内焰不像乙炔那样明亮,而有点发蓝,外焰则显得比氧乙炔焰清晰而且较长。氧液化石油气的温度比乙炔焰略低,温度可达 28002850 。目前氧液化石油气火焰主要用于气割,并部分的取代了氧乙炔焰。2-2 气焊1气焊及特点气焊是利用气体火焰作热源的
28、一种熔焊方法。它借助可燃气体与助燃气体混合燃烧产生的气体火焰,将接头部位的母材和焊丝熔化,使被熔化的金属形成熔池,冷却凝固后形成牢固接头,从而使两焊件连接成一个整体。常用氧气和乙炔混合燃烧的火焰进行焊接,故又称为氧乙炔焊。气焊的优点:(1)设备简单,操作方便,成本低,适应性强,在无电力供应的地方可方便焊接。(2)可以焊接薄板、小直径薄壁管。(3)焊接铸铁、有色金属、低熔点金属及硬质合金时质量较好。气焊的缺点(1)火焰温度低,加热分散,热影响区宽,焊件变形大和过热严重,接头质量不如焊条电孤焊容易保证。(2)生产率低,不易焊较厚的金属。(3)难以实现自动化。2气焊焊接材料(1)焊丝气焊用的焊丝在气
29、焊中起填充金属作用,与熔化的母材一起形成焊缝。因此焊缝金属的质量在很大程度上取决于焊丝的化学成分和质量。对气焊丝的一般要求是:1)焊丝的熔点等于或略低于被焊金属的熔点。2)焊丝所焊焊缝应具有良好的力学性能,焊缝内部质量好,无裂纹、气孔、夹渣等缺陷。3)焊丝的化学成分应基本上与焊件相符,无有害杂质,以保证焊缝有足够的力学性能。4)焊丝熔化时应平稳,不应有强烈的飞溅或蒸发。5)焊丝表面应洁净、无油脂、油漆和锈蚀等污物。常用的气焊丝有碳素结构钢焊丝、合金结构钢焊丝、不锈钢焊丝、铜及铜合金焊丝、铝及铝合金焊丝和铸铁气焊丝等。(2)气焊熔剂气焊熔剂是气焊时的助熔剂。气焊熔剂熔化反应后,能与熔池内的金属氧
30、化物或非金属夹杂物相互作用生成熔渣,覆盖在熔池表面,使熔池与空气隔离,因而能有效防止熔池金属的继续氧化,改善焊缝的质量。对气焊熔剂的要求是:1)气焊熔剂应具有很强的反应能力,能迅速溶解某些氧化物或与某些高熔点化合物作用后生成新的低熔点和易挥发的化合物。2)气焊熔剂熔化后粘度要小,流动性要好,产生的熔渣熔点要低,密度要小,熔化后容易浮于熔池表面。3)气焊熔剂能减少熔化金属的表面张力,使熔化的填充金属与焊件更容易熔合。4)气焊熔剂不应对焊件有腐蚀等副作用,生成的熔渣要容易清除。气焊熔剂可以在焊前直接撒在焊件坡口上或者蘸在气焊丝上加入熔池。焊接有色金属(如铜及铜合金、铝及铝合金)、铸铁、耐热钢及不锈
31、钢等材料时,通常必须采用气焊熔剂。3气焊设备及工具气焊设备及工具主要有氧气瓶、乙炔瓶、液化石油气瓶、减压器、焊炬及输气胶管等。(1)氧气瓶、乙炔瓶、液化石油气瓶氧气瓶、乙炔瓶、液化石油气瓶是分别贮存和运输氧气、乙炔、液化石油气的压力容器。氧气瓶外表涂天蓝色,瓶体上用黑漆标注“氧气”字样;乙炔瓶外表涂白色,并用红漆标注“乙炔” 字样。气瓶外表面涂银灰色漆并用红漆标注“液化石油气”字样。(2)减压器由于氧气瓶内的氧气压力最高达15 MPa,乙炔瓶内的乙炔压力最高达1.5 MPa减压器,而气焊工作时氧气的压力一般为0.1 0.4 MPa,乙炔的压力最高不超过0.15 Mpa,所以必须要有一种调节装置
32、将气瓶内的高压气体降为工作时的低压气体,并保持工作时压力稳定,这种调节装置叫减压器,又称压力调节器。减压器按用途不同可分为氧气减压器、乙炔减压器、液化石油气减压器等;按构造不同可分为单级式和双级式两类;按工作原理不同可分为正作用式和反作用式两类。目前常用的是单级反作用式减压器。(3)焊炬焊炬是气焊时用于控制气体混合比、流量及火焰并进行焊接的工具。焊炬按可燃气体与氧气混合的方式不同,可分为射吸式焊炬(也称低压焊炬)和等压式焊炬两类,现在常用的是射吸式焊炬,等压式焊炬可燃气体的压力和氧气的压力相等,不能用于低压乙炔,所以目前尚未广泛使用。两类焊炬的特点及原理结构如表21所示。对于新使用的射吸式焊炬
33、,必须检查其射吸情况。即接上氧气胶管,拧开氧气阀和乙炔阀,将手指轻轻按在乙炔进气管接头上,若感到有一股吸力,则表明射吸能力正常,若没有吸力,甚至氧气从乙炔接头上倒流,则表明射吸能力不正常,则禁止使用。表21焊炬的特点及原理结构焊炬种类原理结构图工作原理特点射吸式焊炬射吸作用是利用高压氧从从喷嘴口快速射出,并在喷嘴外围造成吸力吸出乙炔,从而调节乙炔、氧气的流量,保证乙炔与氧气按一定比例混合。工作压力在0.001 MPa以上即可,通用性强,低、中压乙炔都可用。但较易回火等压式焊炬乙炔靠自己的压力与氧同时进入混合气管,自然混合后,从喷嘴喷出,因此乙炔与氧气的压力应相等或相近结构简单,火焰燃烧稳定,回
34、火可能性较射吸式焊炬小。但不能用于低压乙炔(4)输气胶管氧气瓶和乙炔瓶中的气体,须用橡皮管输送到焊炬或割炬中。根据GB9448-1999焊接与切割安全标准规定,氧气管为黑色,乙炔管为红色。通常氧气管内径为8mm,乙炔管内径为10mm,氧气管与乙炔管强度不同 , 氧气管允许工作压力为 1.5MPa,乙块管为0.3MPa 。连接于焊炬胶管长度不能短于 5m, 但太长了会增加气体流动的阻力,一般在 1015m为宜。焊炬用橡皮管禁止油污及漏气, 并严禁互换使用。(5)其他辅助工具1)护目镜气焊时使用护目镜,主要是保护焊工的眼睛不受火焰亮光的刺激,以便在焊接过程中能够仔细地观察熔池金属,又可防止飞溅金属
35、微粒溅入眼睛内。护目镜的镜片颜色和深浅,根据焊工的需要和被焊材料性质进行选用。颜色太深太浅都会妨碍对熔池的观察,影响工作效率,一般宜用37号的黄绿色镜片。2)点火枪使用手枪式点火枪点火最为安全方便。当用火柴点火时,必须把划着了的火柴从焊嘴的后面送到焊嘴或割嘴上,以免手被烧伤。此外还有清理工具,如钢丝刷、手锤、铿刀;连接和启闭气体通路的工具,如钢丝钳、铁丝、皮管夹头、扳手等及清理焊嘴的通针。4气焊工艺参数气焊工艺参数是保证焊接质量的主要技术依据。它包括焊丝的型号、牌号及直径、气焊熔剂、火焰的性质及能率、焊炬的倾斜角度、焊接方向、焊接速度和接头形式等。(1)接头形式气焊可以在平、立、横、仰各种空间
36、位置进行焊接,接头形式主要采用有对接接头,角接接头、卷边接头一般只在薄板焊接时使用,搭接接头、T形接头很少采用。对接接头时,当板厚大于5mm 时应开坡口。低碳钢的卷边接头及对接接头的形状和尺寸如表22所示。表22低碳钢的卷边接头及对接接头的形状和尺寸接头形式图示板厚(mm)卷边及钝边(mm)间隙(mm)坡口角度()左向焊法卷边接头0.51.01.52.0不用形坡口对接接头1.05.01.04.02.04.0V形坡口对接接头5.01.53.02.04.0左向焊法80,右向焊法603.66.0(2)焊丝焊丝的型号、牌号选择应根据焊件材料的力学性能或化学成分,选择相应性能或成分的焊丝,具体见教材表
37、2-2 、表 2-3 、表 2-4 和表 2-5。焊丝直径主要根据焊件的厚度来决定,如表23所示。表23焊丝直径与焊件厚度的关系(mm)焊件厚度1223355101015焊丝直径12或不用焊丝2333.23.2445若焊丝直径过细,焊接时焊件尚未熔化,而焊丝已很快熔化下滴,容易造成熔合不良等缺陷;相反,如果焊丝直径过粗,焊丝加热时间增加,使焊件过热就会扩大热影响区,同时导致焊缝产生未焊透等缺陷。在开坡口焊件的第一、二层焊缝焊接 , 应选用较细的焊丝,以后各层焊缝可采用较粗焊丝。焊丝直径还和焊接方向有关 , 一般右向焊时所选用的焊丝要比左向焊时粗些。(3)气焊熔剂气焊熔剂的选择要根据焊件的成分及
38、其性质而定,一般碳素结构钢气焊时不需要气焊熔剂,而不锈钢、耐热钢、铸铁、铜及铜合金、铝及铝合金气焊时,则必须采用气焊熔剂。(4)火焰的性质及能率1)火焰的性质 气焊火焰的性质,应该根据材料的种类来选择。中性焰适用于焊接一般低碳钢和要求焊接过程对熔化金属不渗碳的金属材料,如不锈钢、紫铜、铝及铝合金等;碳化焰对焊缝金属具有渗碳作用,故碳化焰只适用含碳较高的高碳钢、铸铁、硬质合金及高速钢的焊接;一般碳钢和有色金属,很采用氧化焰,但焊接黄铜用含硅焊丝时,氧化焰会使熔化金属表面覆盖一层硅的氧化膜可阻止黄铜中锌的蒸发,故宜采用氧化焰。2 )火焰的能率气焊火焰能率主要是根据每小时可燃气体 ( 乙炔 ) 的消
39、耗量 (L/h) 来确定。在保证焊接质量的前提下,应尽量选择较大的火焰能率,以提高生产率。一般焊件较厚,金属材料熔点较高、导热性较好( 如铜、铝及合金),焊缝处于平焊位置时,应选择较大的火焰能率。在气焊低碳钢和低合金钢时,可按下列经验来计算火焰能率:左向焊法乙炔的消耗量(100120)焊件厚度(L/h)右向焊法乙炔的消耗量(120150)焊件厚度(L/h)(5)左向焊法和右向焊法气焊时,按照焊炬和焊丝的移动的方向,可分为左向焊法和右向焊法两种。左向焊法适宜于薄板的焊接。右向焊法适合焊接厚度较大,熔点及导热性较高的焊件。焊炬的倾斜角度,焊接速度等其他工艺参数参考教材。2-3气割气割是利用气体火焰
40、的能量将金属分离的一种加工方法,是生产中钢材分离的重要手段。气割技术几乎是和焊接技术同时诞生的一对相互促进、相互发展的“孪生兄弟”,构成了钢铁一裁一缝。1气割原理气割是利用气体火焰的热能 ,将工件切割处预热到燃烧温度后,喷出高速切割氧流,使其燃烧并放出热量实现切割的方法。氧气切割过程是预热燃烧吹渣过程,其实质是铁在纯氧中的燃烧过程,而不是金属熔化过程。2气割的条件金属气割的主要条件是:(1) 金属在氧气中的燃烧点应低于熔点,这是氧气切割过程能正常进行的最基本条件。(2)金属气割时形成氧化物的熔点应低于金属本身的熔点。氧气切割过程产生的金属氧化物的熔点必须低于该金属本身的熔点,同时流动性要好,这
41、样的氧化物能以液体状态从割缝处被吹除。常用金属材料及其氧化物的熔点如表24所示。表24常用金属材料及其氧化物的熔点金属材料金属熔点()氧化物的熔点()纯铁153513001500低碳钢150013001500高碳钢1300140013001500灰铸铁120013001500铜108412301336铅3272050铝6582050铬15501990镍14501990锌4191800(3) 金属在切割氧射流中燃烧应该是放热反应,使所放出的热量足以维持切割过程继续进行而不中断。(4)金属的导热性不应太高,否则预热火焰及气割过程中氧化所析出的热量会被传导散失,使气割不能开始或中途停止。3.常用金属
42、的气割性(1)纯铁和低碳钢能满足上述要求,所以能很顺利地进行气割。(2)铸铁不能用氧气气割,原因是它在氧气中的燃点比熔点高很多,同时产生高熔点的二氧化硅(Si02),而且氧化物的粘度也很大,流动性又差,切割氧流不能把它吹除。此外由于铸铁中含碳量高,碳燃烧后产生一氧化碳和二氧化碳冲淡了切割氧射流,降低了氧化效果,使气割发生困难。(3)高铬钢和铬镍钢会产生高熔点的氧化铬和氧化镍( 约1990),遮盖了金属的割缝表面,阻碍下一层金属燃烧,也使气割发生困难。(4)铜、铝及其合金燃点比熔点高,导热性好,加之铝在切割过程中产生高熔点二氧化铝(约2050),而铜产生的氧化物放出的热量较低,都使气割发生困难。
43、目前,铸铁、高铬钢、铬镍钢、铜、铝及其合金均采用等离子弧切割。4.气割设备与工具气割设备及工具主要有氧气瓶、乙炔瓶、液化石油气瓶、减压器、割炬(或气割机)等。氧气瓶、乙炔瓶、液化石油气瓶、减压器与气焊用的相同。手工气割时使用的是手工割炬,机械化设备使用的是气割机。(1)割炬割炬是进行火焰气割的主要工具。同焊炬一样,割炬按可燃气体与氧气混合的方式不同也可分为射吸式割炬和等压式割炬两种,射吸式割炬应用最为普遍。射吸式割炬是在射吸式焊炬的基础上,增加了由切割氧调节阀、切割氧气管以及割嘴等组成的切割部分,其的工作原理如图2-1所示。乙炔是靠预热火焰的氧气射入射吸管而被吸入射吸管内。这种割炬低、中压乙炔
44、都可用。图2-2割嘴与焊嘴的截面比较a )焊嘴b)环形割嘴c)梅花形割嘴图2-1射吸式割炬的工作原理1割嘴 2混合气管 3射吸管 4喷嘴 5预热氧气阀 6乙炔阀 7乙炔 8氧气 9切割氧气阀 10切割氧气管 割嘴的构造与焊嘴不同如图2-2所示。焊嘴上的喷射孔是小圆孔,所以气焊火焰呈圆锥形;而射吸式割炬的割嘴按结构形式不同,混合气体的喷射孔有环形和梅花形两种。环形割嘴的混合气孔道呈环形,整个割嘴由内嘴和外嘴二部分组合而成,又称组合式割嘴。梅花形割嘴的混合气孔道,呈小圆孔均匀地分布在高压氧孔道周围,整个割嘴为一体,又称整体式割嘴。等压式割炬的可燃气体、预热氧分别由单独的管路进入割嘴内混合。由于可燃气体是靠自己的压力进入割炬,所以它不适用低压乙炔,而须采用中压乙炔。等压式割炬具有气体调节方便、火焰燃烧稳定、回火可能性较射吸式割炬小等优点,其应用量越来越大,国外应用量比国内大。等压式割炬结构如图2-3所示。图2-3等压式割炬结构如图(2)气割机气割机是代替手工割炬进形气割的机械化设备。它比手工气割的生产率高,割口质量好,劳动强度和成本都较低。近年来,由于计算机技术发展,数控气割机也得到广泛应用。常用的
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100