ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:572.71KB ,
资源ID:2648653      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2648653.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(信号与系统matlab实验线性时不变系统的时域分析.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

信号与系统matlab实验线性时不变系统的时域分析.doc

1、线性时不变系统的时域分析2.1 离散卷积MATLAB提供了conv函数可用来计算下面的卷积和 (2-1)这里假设和都是有限长序列。如果仅在区间内为非零,仅在区间内为非零,那么就仅在区间内为零值。conv函数具体用法如下:n C = conv(A, B) 计算序列A、B的卷积,C为卷积向量,其长度为length(A)+length(B)-1。例2-1:已知,编程计算卷积。MATLAB代码如下:nx=0:9;x=ones(1,length(nx);nh=0:4;h=ones(1,length(nh);y=conv(x,h);% 下限=下限1+下限2ny_min=min(nx)+min(nh);%

2、上限=上限1+上限2ny_max=max(nx)+max(nh);ny=ny_min:ny_max;subplot(3,1,1);stem(nx,x);xlabel(n);ylabel(x(n);axis(ny_min ny_max 0 max(x);subplot(3,1,2);stem(nh,h);xlabel(n);ylabel(h(n);axis(ny_min ny_max 0 max(h);subplot(3,1,3);stem(ny,y);xlabel(n);ylabel(x(n)*h(n);axis(ny_min ny_max 0 max(y);结果显示如图2-1所示。图2-1

3、例2-1结果图2.2 连续时间卷积的数值近似信号和LTI系统的单位冲激响应的卷积定义为 (2-2)为了用MATLAB向量近似在这个积分中的连续函数,要用到分段常数函数。分段常数函数的卷积产生一个收敛到原连续时间信号卷积的表达式。令为宽度为,高度为1,以t=0为中心的矩形脉冲,如图2-2所示,即 (2-3)图2-2 的波形图一个函数可以用分段函数近似,该由一串高度为,其中k为整数,相距的矩形脉冲所组成 (2-4)如图2-3所示。当时,在极限情况下一大类函数都有。图2-3 和的波形图类似地,也能近似为 (2-5)式(2-2)的卷积积分就可近似表示为分段常数信号的卷积 (2-6)一般来说,对求解可能

4、是复杂的。然而,当t取的整数倍时,求这个卷积值是很简单的,所以将计算这些时刻上的输出,即。 (2-7)从式(2-7)可以看出,可以利用的抽样序列x以及的抽样序列h得到连续卷积的数值近似,具体算法如下: y=conv(x,h)*dt % dt为近似矩形脉冲的宽度即抽样间隔例2-2:采用不同的抽样间隔值,用分段常数函数近似与的卷积,并与卷积的解析表达式进行比较。分析:将抽样间隔用dt表示,首先得到两个连续信号的样值,利用y=conv(x,h)*dt即可得到所求的卷积近似。例题中将同时画出连续信号和离散信号的对比波形。MATLAB代码如下:% 有限长信号的时间范围tx_start=0;tx_end=

5、1;th_start=0;th_end=pi;% 近似矩形脉冲的宽度即抽样间隔dt=0.05;% 序列的长度和时间位置标号Nx=fix(tx_end-tx_start)/dt);Nh=fix(th_end-th_start)/dt);nx=fix(tx_start/dt)+(0:Nx-1);nh=fix(th_start/dt)+(0:Nh-1);% 近似脉冲的高度或样值x=ones(1,Nx);h=sin(nh*dt);% 连续卷积近似y=dt*conv(x,h);ny_min=min(nx)+min(nh);ny_max=max(nx)+max(nh);ny=ny_min:ny_max;%

6、 连续信号的近似dt_ideal=0.001;tx=linspace(tx_start,tx_end,1000);x_ideal=ones(1,length(tx);th=linspace(th_start,th_end,1000);h_ideal=sin(th);t1=0:dt_ideal:1-dt_ideal;t2=1:dt_ideal:pi-dt_ideal;t3=pi:dt_ideal:pi+1;t=t1 t2 t3;y1=1-cos(t1);y2=cos(t2-1)-cos(t2);y3=cos(t3-1)+1;y_ideal=y1 y2 y3;% 连续信号及其分段常数函数的波形绘制

7、subplot(3,1,1); bar(nx*dt,x,1);colormap(cool);hold on;handle1=plot(tx,x_ideal,r);xlabel(t);ylabel(x(t);set(handle1,LineWidth,2);axis(ny_min*dt ny_max*dt 0 max(x)*1.1);subplot(3,1,2);bar(nh*dt,h,1);colormap(cool);hold on;handle2=plot(th,h_ideal,r);xlabel(t);ylabel(h(t);set(handle2,LineWidth,2);axis(n

8、y_min*dt ny_max*dt 0 max(h)*1.1);subplot(3,1,3);bar(ny*dt,y,1);colormap(cool);hold on;handle3=plot(t,y_ideal,r);xlabel(t);ylabel(y(t);set(handle3,LineWidth,2);axis(ny_min*dt ny_max*dt 0 max(y)*1.1);当近似矩形脉冲的宽度(或抽样间隔)分别为和时的MATLAB执行结果如图2-4和图2-5所示。从图中可以看出,当抽样间隔缩小后,得到的卷积的数值近似更加接近于理想情况,实际中只要取较小的间隔即可利用离散卷积

9、来对连续卷积进行数值近似。本例给出的是两个有限长序列的卷积,若实际序列的长度很长时,一般将长序列进行分段,有关分段卷积的计算问题将会在“数字信号处理”课程中详细讨论。图2-4 例2-2当时的卷积结果图图2-5 例2-2当时的卷积结果图习题:计算下列信号和的卷积和。1.; 2., .答案1.; nx=0:9;x=ones(1,length(nx);nh=0:4;h=ones(1,length(nh);y=conv(x,h);% 下限=下限1+下限2ny_min=min(nx)+min(nh);% 上限=上限1+上限2ny_max=max(nx)+max(nh);ny=ny_min:ny_max;

10、subplot(3,1,1);stem(nx,x);xlabel(n);ylabel(x(n);axis(ny_min ny_max 0 max(x);subplot(3,1,2);stem(nh,h);xlabel(n);ylabel(h(n);axis(ny_min ny_max 0 max(h);subplot(3,1,3);stem(ny,y);xlabel(n);ylabel(x(n)*h(n);axis(ny_min ny_max 0 max(y); 2., nx=0:3;x=ones(1,length(nx);nh=0:9;h=0.8.nh.*ones(1,length(nh);

11、y=conv(x,h);ny_min=min(nx)+min(nh);ny_max=max(nx)+max(nh);ny=ny_min:ny_max;subplot(3,1,1);stem(nx,x);xlabel(n);ylabel(x(n);axis(ny_min ny_max 0 max(x);subplot(3,1,2);stem(nh,h);xlabel(n);ylabel(h(n);axis(ny_min ny_max 0 max(h);subplot(3,1,3);stem(ny,y);xlabel(n);ylabel(x(n)*h(n);axis(ny_min ny_max 0 max(y);

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服