1、Chapter 3:Mobile Radio Propagation:Large-Scale Path Loss5/26/20241.3.1 Introduction to Radio wave Propagation Small-scale and large-scale fading5/26/20242.3.2 Free Space Propagation ModelIn free space,the received power is predicted by Firiis Equ.Pr(d):ReceivedpowerwithadistancedbetweenTxandRxPt:Tra
2、nsmittedpowerGt:TransmittingantennagainGr:Receiveantennagain:Thewavelengthinmeters.d:distanceinmetersL:ThemiscellaneouslossesL(L=1)areusuallyduetotransmissionlineattenuation,filterlosses,andantennalossesinthecommunicationsystem.L=1indicatesnolossinthesystemhardware.5/26/20243.Reflection:occur from t
3、he surface of the earth and from buildings and walls.Diffraction:occurs when the radio path between the transmitter and receiver is obstructed by a surface that has sharp irregularities(edges).Scattering:occurs when the medium through which the wave travels consists of objects with dimensions that a
4、re small compared to the wavelength,and where the number of obstacles per unit volume is large.3.3 The three Basic Propagation Mechanisms5/26/20244.reflection(反射)atlargeobstacles,Scattering(散射)atsmallobstacles,diffraction(衍射)atedges5/26/20245.EIRP&ERPEIRP:EffectiveIsotropicRadiatedPowerRepresentsthe
5、maximumradiatedpoweravailablefromatransmitterinthedirectionofmaximumantennagain,ascomparedtoanisotropicradiator.ERP:EffectiveRadiatedPowerERPisusedinsteadofEIRPtodenotethemaximumradiatedpowerascomparedtoahalf-wavedipoleantenna(insteadofanisotropicantenna).Inpractice,antennagainsaregiveninunitsofdBi(
6、dBgainwithrespecttoanisotropicsourse)ordBd(dBgainwithrespecttoahalf-wavedipole)2.15dB5/26/20246.9dBiantenna&3dBiantenna5/26/20247.PathLossThepathloss,whichrepresentssignalattenuationasapositivedifference(indB)betweentheeffectivetransmittedpowerandthereceivedpower.Thepathlossforthefreespacemodelwhena
7、ntennagainsareincludedisgivenbyquantitymeasuredindB,isdefinedastheWhenantennagainsareexcluded,theantennasareassumedtohaveunitygain,andpathlossisgivenby(f:MHz,d:km)5/26/20248.TheFriisfreespacemodelisonlyavalidpredictorforPrforvaluesofd,whichareinthefar-fieldofthetransmittingantenna.Thefar-fieldofatra
8、nsmittingantennaisdefinedastheregionbeyondthefar-fielddistancedf,whichisrelatedtothelargestlineardimensionofthetransmitterantennaapertureandthecarrierwavelength.Thefar-fielddistanceisgivenbyTobeinthefar-fieldregion,dmustsatisfyThefar-fieldregionofatransmittingantenna5/26/20249.The Reference Distance
9、Itisclearthatequationdoesnotholdford=0.Forthisreason,large-scalepropagationmodelsuseaknownreceivedpowerreferencepoint.Thereceivedpower,Pr(d),atanydistancedd0,mayberelatedtoPratd0.IfPrisinunitsofdBmordBW,thereceivedpowerisgivenby5/26/202410.3.4LinkbudgedesignusingpathlossmodelLog-distancepathlossmode
10、lBoth theoretical and measurement-based propagation models indicate that average received signal power decreases logarithmically with distance,whether in outdoor or indoor channels.The average large-scale path loss for an arbitrary T-R separation is expressed as a function of distance by using path
11、loss exponent n.n is the path loss exponent which indicates the rate at which the path loss increases with distanced0 is the close-in reference distance which is determined d is the T-R separation distance5/26/202411.Path-lossexponents5/26/202412.If a transmitter produces power:Pt=50w,receive sensit
12、ivity(minimum usable signal level)is-100dbm.Assume d0=100m,with a 900MHz carrier frequency,n=4,Gt=Gr=1;find the coverage distance d.Transmit Power:Pt=50W=47dBmPr(d0)=-24.5dBmPL(dB)=40log(d/d0)=-24.5-(-100)=75.5dbIf n=4,log(d/d0)=75.5/40=1.8875,d=7718mExample15/26/202413.ThemodelinEquation(3.11)doesn
13、otconsiderthefactthatthesurroundingenvironmentalcluttermaybevastlydifferentattwodifferentlocationshavingthesameT-Rseparation.Thisleadstomeasuredsignalswhicharevastlydifferentthantheaverage valuepredictedbyEquation(3.11).Log-normalShadowing5/26/202414.Log-normal Shadowing 5/26/202415.Determination of
14、 Percentage of Coverage Area5/26/202416.U(r)asafunctionofprobabilityofsignalabovethresholdonthecellboundary.5/26/202417.Example2Alocalaveragesignalstrengthfieldmeasurements,themeasureddatafitadistant-dependentmeanpowerlawmodelhavingalog-normaldistributionaboutthemean.Assumethemeanpowerlawwasfoundtob
15、e.Ifasignalof1mWwasreceivedatd0=1mfromthetransmitter,andatadistanceof10m,10%ofthemeasurementswerestrongerthan-25dBm,definethestandarddeviation,forthepathlossmodelatd=10m.5/26/202418.Fourreceivedpowermeasurementsweretakenatdistancesof100m,200m,1km,and 3 km froma transmitter.These measuredvaluesare gi
16、ven in thefollowingtable.ItisassumedthatthepathlossforthesemeasurementsfollowsthemodelinEquation(3.12.a),whered0=100m:(a)findtheminimummeansquareerror(MMSE)estimateforthepathlossexponent,n;(b)calculatethestandarddeviationaboutthemeanvalue;(c)estimatethereceivedpoweratd=2 kmusingtheresultingmodel;(d)
17、predictthelikelihoodthatthereceivedsignal level at 2 km will be greater than-60 dBm;and(e)predict thepercentageofareawithina2kmradiuscellthatreceivessignalsgreaterthan-60dBm,giventheresultin(d).Example35/26/202419.The value of n which minimizes the mean square error can be obtained byequatingthederi
18、vativeofJ(n)tozero,andthensolvingforn.(a)UsingEquation(3.11),wefind=pi(d0)-10nlog(di/100m).RecognizingthatP(d0)=0 dBm,wefindthefollowingestimatesforp,indBm:TheMMSEestimatemaybefoundusingthefollowingmethod.Letpibethereceivedpoweratadistancedi,andletbetheestimateforpiusingthepathlossmodel of Equation(
19、3.10).The sum of squared errors between the measured andestimatedvaluesisgivenbySettingthisequaltozero,thevalueofn isobtainedasn=4.4.5/26/202420.(b)The sample variance 2=J(n)/4 at n=4.4 can beobtainedasfollows.therefore=6.17dB,whichisabiasedestimate.5/26/202421.(c)The estimate of the received power
20、at d=2 km is(d)The probability that the received signal level will be greater than-60 dBm is(e)67.4%of the users on the boundary receive signals greater than-60 dBm,then 92%of the cell area receives coverage above 60dbm 5/26/202422.3.5 Outdoor Propagation ModelsOkumura Model(150-1920MHz,1km-100km)Ha
21、ta Model(150-1500MHz,1km-20km)Egli Model(40-400MHz,0-64km)5/26/202423.notprovideanyanalyticalexplanationitsslowresponsetorapidchangesinterrainOkumuraModel5/26/202424.Okumuramedianattenuationandcorrection5/26/202425.Find the median path loss using Okumuras model for d=50 km,hte=100 m,hre=10 m in a su
22、burban environment.If the base station transmitter radiates an EIRP of 1 kW at a carrier frequency of 900 MHz,find the power at the receiver(assume a unity gain receiving antenna).Example 45/26/202426.HATAmodel&COST231extension5/26/202427.Example 5In the suburban of a large city,d=10 km,hte=200 m,hr
23、e=2 m,carrier frequency of 900 MHz,using HATA s model find the path loss.5/26/202428.3.6Indoorpropagationmodels5/26/202429.FeatureofIndoorRadioChannelThedistancescoveredaremuchsmaller,andthevariabilityoftheenvironmentismuchgreaterforamuchsmallerrangeofT-Rseparationdistances.Ithasbeenobservedthatprop
24、agationwithinbuildingsisstronglyinfluencedbyspecificfeaturessuchasthelayoutofthebuilding,theconstructionmaterials,andthebuildingtype.Indoorradiopropagationisdominatedbythesamemechanismsasoutdoor:reflection,diffraction,andscattering.However,conditionsaremuchmorevariable.5/26/202430.Pathattenuationfac
25、torsPartitionLossesinthesamefloorPartitionLossesbetweenFloors(floorattenuationfactors,FAF)5/26/202431.Log-distancePathLossModelIndoorpathlosshasbeenshownbymanyresearcherstoobeythedistancepowerlawWherethevalueofndependsonthesurroundingsandbuildingtype,andXrepresentsanormalrandomvariableindBhavingasta
26、ndarddeviationofsigma.Thisisidenticalinformtothelog-normalshadowingmodelofoutdoorpathattenuationmodel.5/26/202432.AttenuationFactorModelWhere nSF represents the exponent value for the“same floor”measurement.The path loss on a different floor can be predicted by adding an appropriate value of FAF5/26
27、/202433.SignalPenetrationintobuildingsRF penetration has been found to be a function of frequency as well as height within the buildingMeasurements showed that penetration loss decreases with increasing frequency.Specifically,penetration attenuation values of 16.4dB,11.6dB,and 7.6dB were measured on
28、 the ground floor of a building at frequencies of 441MHz,896.5MHz,and 1400Mhz,respectly.Results showed that building penetration loss decreased at a rate of 1.9dB per floor from the ground level up to the fifteenth floor and then began increasing above the fifteen floor.5/26/202434.RayTracingandSite
29、SpecificModeling In recent years,the computational and visualization capabilities of computers have accelerated rapidly.New methods for predicting radio signal coverage involve the use of Site Specific(SISP)propagation models and graphical information system(GIS)database.SISP models support ray trac
30、ing as a means of deterministically modeling any indoor or outdoor propagation environment.Through the use of building databases,which may be drawn or digitized using standard graphical software packages,wireless system designers are able to include accurate representations of building and terrain f
31、eatures.5/26/202435.Exercises1.If a transmitter produces 50W of power,express the transmit power in units of(a)dBm,and(b)dBW.If 50 W is applied to a unity gain antenna with a 900 MHz carrier frequency,find the received power in dBm at a free space distance of 100 m from the antenna.What is Pr(10 km)
32、?Assume unity gain for the receiver antenna.2.If the base stations use 20 W transmitter powers and 10 dBi gain omnidirectional antennas,determine the cell coverage distance d.Let n=4 and the standard deviation of 8 dB hold as the path loss model for each cell in the city.Also assume that a required signal level of-90 dBm must be provided for 90%of the coverage area in each cell.Assume d0=1 km.(Q(0.7)=0.24,f=900MHz)5/26/202436.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100