ImageVerifierCode 换一换
格式:PDF , 页数:80 ,大小:5.50MB ,
资源ID:261851      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/261851.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【曲****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【曲****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(机械学习课件(日文).pdf)为本站上传会员【曲****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

机械学习课件(日文).pdf

1、檄械学曾一夕二园I田孝西学院大学情幸艮X亍教育七夕一TUT 2000/06/071一夕7一入力J(D知髡 知的一夕解析.纸才缶亡一儿 大容量亍一夕一入 亍一夕7XV一厅亍 对象(D多棣化Web上(D亍牛入卜L/TUT 2000/06/072知口七入口|抽出|口|奕换J_Jj 0统合外部DBJ 1T/X知TUT 2000/06/0737彳二技法 统tt学 43 5辞戢 g入弓 zL Jly 卜 决定木 Rough set 相 Uli/7b Graph Based Induction J帚系解命理口A 变数逗捐 一夕O)可视化TUT 2000/06/074What is supervised le

2、arning?Input inst ances co nt ains Class at t ribut es Explanat io n at t ribut es.Generat e rules t o describe class descript io ns induct ively.IF co ndit io ns THEN class Learning fro m examples,Inco rpo rat io n o f backgro und kno wledgecf.regressio n,discriminant analysis,neural net wo rk,near

3、est neighbo rTUT 2000/06/075Typical applications Kno wledge acquisit io n t o be used in plant o perat ing expert syst em Act io n predict io n o f o ppo nent t eams in spo rt s mat ch Diagno sis fro m medical t est s Disco very o f act ive mo t ifs in chemical co mpo unds fro m st ruct ure act ivit

4、 y relat io nship dat aset sTUT 2000/06/076Classification of ProblemsTypeOutputUnderstandingExampleClassificationdefinite answers to all questionsUnnecessaryplant operation,character recognitionGuessprobable answers to some questionsUnnecessarysports action prediction,stock price predictionUnderstan

5、dingprobability to all questionsNecessarymedical diagnosis,grammar acquisitionTUT 2000/06/077St reams in learning research I.Classificat io n Pursuit o f Accuracy UCI Repo sit o ry o f machine learning dat abasesMert z,C.J.and Murphy,P.M,(1996):ht t p:/wwwjcs.uci.edu/mleam/MLRepo sit o ry.ht ml St a

6、ndard pro gram fo r co mpariso nQuinlan,J.R,(1993):C4.5:Programs for Machine Learning,Mo rgan Kaufmann;古川(1995):4足上石夕筋只卜勿口.Review 秋集 u a,金田(1998):例力 b o学者1技街必用仁向rrp情辍处理学会Vo l.39,No.2,pp.145-151;No.3,pp.245-251.TUT 2000/06/078决定木方法7眼G色身:鬓G色目的变数青低里 八、青高里 八、茶高里 八、茶高:/口茶低yn y H青低+青高:/口+青高赤+TUT 2000/06/0

7、79决定木青青茶,具具具 枭鼻黑 低嬴高低口八,青:+高,7,口八,,青:+高,7,口八,茶:一 低,7,口八二茶:一TUT 2000/06/0710平均情辍量仁上5变数iiiR-平均情辍量“、p 1 p n 1 nI(p)n)=-log 2-log 2-(p+n)(p+n)(p+n)(p+n)-分前()=-lo g2-lo g2-o o o o=0.954Z;。TUT 2000/06/0711分HI二上盲平均情辍量 利得身;fikcfci)分类真 0.003,/2 :L 均得 高 低 平利2-5 1-33-5 2-3 38-+2-5 1-3 13-5 2-30.97 Ibit0.918bit

8、0.918=0.95 Ibit=0.003bit5 82 g鬓(D色仁上盲分 0.454/;/Y眼(D色仁上分类直0.3476TUT 2000/06/07 12数值属性结合及一儿仁上马糖尿病粉断木SONAR:ht t p:/www.t rl.ibm.co m/pro ject s/s7800/DBmining/index.ht mTUT 2000/06/0713Pro gress in Decisio n Tree Variable with continuous values Entropy gain ratio,Gini index Sampling Pruning Bagging,Boo

9、sting User interface Interactive expansion of a tree Visualization RulesTUT 2000/06/0714G/n/index vs.Ent ro pyGini-index=Z P/(1-Pr)=1-Z P,TUT 2000/06/0715决定木(D方法-秋集金田:例力Jo学雪技街o 必用【二向【十。情辍处理学会Vo L39,No.2,pp.145-151;No.3,pp.245-251(1998).Breiman,L.,Friedman,J.H.,Olshen,R.A.&St o ne,C.J.:Classificat io

10、 n and Regressio n Trees,The Wadswo rt h&Bro o ks/Co le(1984).CART Quinlan,J.R.:C4.5:Pro grams fo r Machine Learning,Mo rgan Kaufmann(1993).古川IR:一夕解析,卜、:(1995).TUT 2000/06/0716St reams in learning research III.Ro ugh set Characteristics Non exploratory Methodology for decision table Analysis of vari

11、able dependencies NP hard to attributes&values References Pawlak,Z.:Ro ugh Set s:Theo ret ical Aspect s o f Reaso ning abo ut Dat a,Kluwer Academic Publishers(1991).W.Ziarko:Review o f Basics o f Ro ugh Set s in t he Co nt ext o f Dat a Mining,Proc.Fourth International Workshop on Rough Sets,Fuzzy S

12、ets,and Machine Discovery,pp.447-457,To kyo(1996).Dat alo gic/R:Reduct Syst ems Inc.TUT 2000/06/0717Ro ugh set rliPositive regionBoundary regionNegative regionTUT 2000/06/0718言十算谩程1:雕散化Obj-112.0218.2319.0 9555 17.5955618.0955719.6955815.7HECT132.217157.075148.0301532.3130175.8182611.260 199.1 1917 4

13、.0 143111.0200117.195186.6422229.9152103.2383241.1161Class SHECT100100210211311100402111512101610100712211800211Reductl=Size,Height,EnergyReduct2=Size,Height,Current Core=Size,HeightTUT 2000/06/0719ClassSHECT100100210211311100402111512101610100712211800211HeightEnergyTemperat ure010021110211221脱明变数目

14、的变数QP=Size,Height,Energy,Current Q=Temperat ureReduct 1(P,Q)=Height,Energy)Reduct 2(P,Q)=Height,Current Co re(P,Q)=Height TUT 2000/06/0720tt算谩程 2:Decisio n mat rix(cjz)62 1 0 2 1 1Rule醇出J123IOBJele3e61e2(S,l)(F;2)(qi)(H0)(E,2)(qi)2)(CD2e4(H2)(C1)(S,0)(ft 2)(Cl)(S,O)(H,2)(C1)3e5(S,1)012)(H2)(H2)4e7(S

15、,1)(H,2)(E,2)(C1)(H,2)(E;2)(C1)(H2)(E,2)(C1)5e8(E,2)(CD(S,0)(H,0)(E,2)(Cl)(S,O)(E,2)(C1)B=BS.1)V(E,2)VC 1)A(QLO)V(E,2)V(C 1)A(E,2)V(C D)=(E,2)V(C,1)B12=(H,2)V(C,1)A(O)V(H,2)V(C,1)A(O)V(H,2)V(C 1)=(H,2)V(C,1)Bl3=(2)A BH,2)A QL2)=(H,2)B14 二(1)V(H,2)V(E,2)V(C,lb A(H,2)V(E,2)V(C,1)A(H,2)V(E,2)V(C 1)=(H,

16、2)V(E,2)V(C,1)B)二(E,2)V(C 1)A(O)V(H,O)V(E,2)V(C,1)A BS,O)V(E,2)V(C,1)=(E,2)V(C,1)(Energy=2)(Current=1)(Height=2)9(Temperat ure=1)(Temperat ure=1)(Temperat ure=1)TUT 2000/06/0721Variable Precisio n Ro ugh Set Mo delPositive regionBoundary regionNegative regionTUT 2000/06/0722Variable Dependency Analy

17、sisNecessary and Sufficient Variable Set sTUT 2000/06/0723Cars exampleNoSizeCylTurboFuelsysDisplace Co mpPo werTransWeightMileage1co mpact6yesEFImedium highhighaut omediummedium2co mpact6noEFImedium mediumhighmanualmediummedium3co mpact4noEFImedium highhighmanualmediummedium4co mpact6yesEFImedium hi

18、ghhighmanuallighthigh5co mpact6noEFImedium medium mediummanualmediummedium6co mpact6no2-BBLmedium medium mediumaut oheavylo w7co mpact6noEFImedium mediumhighmanualheavylo w8subco mpact4no2-BBLsmall highlo wmanuallighthigh9co mpact4no2-BBLsmall highlo wmanualmediummedium10co mpact4no2-BBLsmall highme

19、dium aut o mediummedium11subco mpact4noEFIsmall highlo wmanuallighthigh12subco mpact4noEFImedium medium mediummanualmediumhigh13co mpact4no2-BBLmedium medium mediummanualmediummedium14subco mpact4yesEFIsmall highhighmanualmediumhigh15subco mpact4no2-BBLsmall mediumlo wmanualmediumhigh16co mpact4yesE

20、FImedium mediumhigh highmanual aut omedium mediummedium medium17co mpact6noEFImedium medium18co mpact4noEFImedium mediumhighaut omediummedium19subco mpact4noEFIsmall highmediummanualmediumhigh20co mpact4noEFIsmall highmediummanualmediumhigh21co mpact4no2-BBLsmall highmediummanualmediummediumReduct s

21、(1)cyl,fuelsys,co mp,po wer,weight(2)size,fuelsys,co mp,po wer,weight(3)size,fuelsys,displace,weight(4)size,cyl,fuelsys,po wer,weight(5)cyl,t urbo,fuelsys,displace,co mp,t rans,weight(6)size,cyl,fuelsys,co mp,weight(7)size,cyl,t urbo,fuelsys,t rans,weightCo re:fuelsys,weight Ziarko:The disco very,an

22、alysis,and represent at io n o f dat a dependencies in dat abases,Knowledge Discovery in Databases pp.195-209,Piat et sky-Shapiro&Frawley ed.AAAI Press(1991).TUT 2000/06/0724Reduct&Core Effects to Sum of SquaresSize cyl t urbo fuelsys displace co mp po wer t rans weightVariables 25TUT 2000/06/07Ro u

23、gh Set Met ho d as a To o l o f Dat a Analysis Very go o d rules fo r underst andingDespit e To o many reduct s Number o f reduct s changes wit h co nfidence value in VPRSM Disregard o f frequenciesTUT 2000/06/0726Ro ugh set Pawlak,Z.:Ro ugh Set s:Theo ret ical Aspect s o f Reaso ning abo ut Dat a,K

24、luwer Academic Publishers(1991).W.Ziarko:Review o f Basics o f Ro ugh Set s in t he Co nt ext o f Dat a Mining,Proc.Fourth International Workshop on Rough Sets,Fuzzy Sets,and Machine Discovery,pp.447-457,To kyo(1996).Datalogic/R:Reduct Systems Inc.方法/俞0特徵 雕散表瑰仁对守己方法 共起的玄分布力知得力,可能 tt算量勺一入数kN,属性数占属性值数

25、Uexp(N)TUT 2000/06/07 27St reams in learning research II.Charact erist ic Rules Evaluat io n by Usefulness Pat t erns wit h Accuracy&Suppo rt St at ist ical est imat io n o f generalit y and accuracy 於木(1999):一夕Z一久力、特徵的及一髡兄(D太的(D一般性t正碓性内信赖性同畤FMffi手法、人工知能学会14,139-147.Except io ns as int erest ingness

26、於木、志村(1997):情辍理的手法在用!/、太一夕 一久力例外的知髡见、人工知能学会12,305-312.Rat ing usefulness by human est imat io n Rule generat io n by Genet ic Algo rit hmTerano,T.and Ishino,Y.(1996):Int eract ive kno wledge disco very fro m market ing quest io naire using simulat ed breeding and induct ive learning met ho ds,Proc.K

27、DD-96,279-282.Market basket analysisTUT 2000/06/0728相儿一儿0抽出Asso ciat io n rules mining、)一7?一弓相 UllzJlz番号艮售入了彳公1013d、口一、If 一川102W厂人A八加103104二 一、lf 一及105/一人 n mx w106心107W H八W108一卜碓信度7P-7P37.5%100.0%V k人 夕3-737.5%100.0%If 一儿n-750.0%80.0%可、3-X-3-750.0%80.0%n-7 W 丁入37.5%75.0%”:/n-737.5%75.0%W 厂人 3-7 37.

28、5%75.0%”:/T H 厂人 3-737.5%75.0%T W 门37.5%75.0%W L人 3-7 TUT 2000/06/0729/4pr/o r/algo rit hm候祷了彳亍a集合江舛集合 力集合1 河集合也”卜2 油集合也K 一卜3 力集合小”卜优厂打62.5%少厂人A力50.0%/1 k入 37.5%口1方62.5%少厂人125.0%37.5%以U仅37.5%/尸人A 八 Iff候祷力、三 除外50.0%25.0%物”37.5%37.5%口 V、候撤为 除外37.5%口一人八12.5%乙乂%外12.5%0.0%刀人心12.5%TUT 2000/06/0730畤系列一夕(D解

29、析名前Tid品目Yamada105Yamada210Hiro sawa010Hiro sawa012Hiro sawa109彳、水、廿彳夕一Mit a103亡一及、廿彳夕一Ybshino002Ybshino106Ybshino205Haneda011TUT 2000/06/0731畴系列一夕O解析名前(Tid品目)Yamada(105 ET-7)(210yyHirosawa(010?工一久、-y)(012 ET-7P)(109 7.水、廿彳夕一)Mita(103、一及、廿彳夕一)Yoshino(002 tf-7)(106 彳 廿彳夕一)(205Haneda(011:/七)娟一卜Z夕一40.0%

30、(亡一及)一40.0%(亡一及)一 廿彳夕一)TUT 2000/06/0732分Ji横造(D醇入丁彳TUT 2000/06/0733Peo pleIDAgeMarried#Cars10023No120025Yes130029No040034Yes250038Yes2数值属性(D取Int erval20.24252930.3435.39VFrequent it emset(part)It emsetSuppo rt32323,2 高隹散化 Max-suppor 废越;grange统合一未复数(Drange Frequent itemsetlfWRule醇出 Rule Interest 仁上1J刈

31、1J认否 Partial completeness概念Interva殷定、健全性碓保Srikant,R.&Agrawal,R.:Mining Quant it at ive Asso ciat io n Rules in Large Relat io nal Tables,Pro c.ACM SIGMOD,pp.1-12(1996).RuleSuppo rtCo nfidence and +40%100%60%66.6%TUT 2000/06/0734倪想卜醇入仁上盲要因分析客#年龄性别125男学生232女OL 客#日付瞒黄商品100/00/00S-男100/00/00A-2 0 代197/0

32、1/30CD-X197/02/05CD-Y1 200/00/00s-女200/00/00A-3 0 代297/01/15Video-A297/03/03Video-B 沼尾.清水:流通判:招九6一夕二/Z,人工知能学会 Vo l.12,No.4,pp.528-535(1997).TUT 2000/06/0735畴系列一夕二事例温度1E力畴系列1己号化仁上马夕一 濠戢教肺付帚纳学普1 V喇频2fT1侬局T2周13瞰悟14回下降T5瞰T5用T7瞰局T8瞰1W19用IF压力上昇AND温度下降THEN昇常身生:碓率80%佐藤:亍一夕7彳二JZ向【力1/一及心/死7X:/技庙用,情辍如:理学会西支部平成

33、9年度第1回卜工了研究会TUT 2000/06/0736横造拯弓鼠WWW7入履摩(D分析-KWWWURL:8300,link:40,000lo g:19,000人/day,400MB/day Transact io n0 表琨IP address,Access t ime,URL URL pairCD变换(A,B),(B,C),(C,A),(A,D)Rule 例入球技=球技-野球才 于:夕一木卜猪口他:人工知能学会基磁研究会SIG-FAI-9801-10,pp.55-60(1998).TUT 2000/06/0737相儿一儿(D探索 Agrawal,A,et.al.:Dat abase Min

34、ing:A Perfo rmance Perspect ive,IEEE Trans,o n Kno wledge and Dat a Engineering,Vo l.5,No.6,pp.914-925(1993).Fast Alo go rit hms fo r Mining Asso ciat io n Rules,Pro c.VLDB,pp.487-499(1994).ht t p:/www.almaden.ibm.co m/cs/-喜建川:一夕二相及一儿抽出技法,人工知能学会 Vo l.12,No.4,pp.513-520(1997).Wasio,T.et.al.:Mining As

35、so ciat io n Rules fo r Est imat io n and Predict io n,Pro c.PAKDD98(Lect ure No t es in Al,1394)pp,417-419(1998).Agrawal,A.et.al.:Mining Sequent ial Pat t erns,Pro c.Dat a Engineering,pp.3-14(1995).沼尾他:要因分析亍一夕二情辍处理第51回全国大会,5E-1(1995).流通渠仁招,6一夕7f二:/人工知能学会赢Vo l.12,No.4,pp.528-535(1997).-猪口他:八毛八/卜分析情造

36、亍一夕拯强占通信抡一一 夕遹用,人工知能学会 SIG-FAI 9801,pp.55-60(1998).TUT 2000/06/0738Graph Based Induct io n 逐次了拯弓rn KA吉田.元田:逐次7r据副二基V帚纳推人工知能学会H Vo L12,pp.58-67(1997).TUT 2000/06/0739GBlCDziq:/卜操作履雁解析(D必用手芸 稼 直前 形嬲U 1-NNCART GBI精度 22.6%20.7%22.6%20.8%34.6%57.8%TUT 2000/06/0740Graph Based Induct io n 0特徵高速菁造化才工夕卜(D解析可

37、-概念狸得,分类直规即学雪,推高速 化。)何孔仁吞逾用可能 Sequence(DNA,pro t ein)用 Negat ive玄条件表琪仁工夫力弋必要 Ordered Graphl二限定-烧期概念f士速结二限定-障害忆上雉玄才工夕卜(D 取困莫隹TUT 2000/06/0741席隔产关涉前提知后战 parent(1,2).parent(15 3).正例他例 grandparent。4).grandparent(1,5).余吉果 grandparent(X,Y)parent(X5 Z),parent(Z5 Y).TUT 2000/06/0742Versio n space中探索探用低脱 粢却低

38、脱 o正例 翼例Grandparent(X,Y)?被覆集合了及=i刃犬A 新太玄M(D付加 变数(D定数化 言己述房最少原理-C低脱逗扒 FOIL:Quinlan(1990)entropyl::上Z最良探索 Progol:Muggleton(1995)逆伴意(Inverse entailment二 上盲探索空宿小TUT 2000/06/0743Pro go kck5变臭原性物散别-230槿(D二卜口化合物:Ames t est po sit ive 138/negat ive 92,Debnat h et al:J.Med.Chem.34:786-797(1991).-188槿:重回iI帚分析

39、实施.Progol:188(12hr)/42(6hr):l分割解析 atmfcompound,atom,element,type,charge),bondfcompound,atoml,atom2,bondtype).-9?l0Ru le分精度士同梯-指示变数自勤的髡足Phenant hrene 骨格、例外的acet ylene-使用法困If性、:算(Cj/King et.al.:Relating chemical activity to structure:W-x an examination of ILP success,New GenerationComputing,Vol.13,pp.

40、411-433(1995).44TUT 2000/06/07Induct ive lo gic pro gramming-人工知能学会ft小特集:,帚纳Ift理Vo l.12,No.5,pp.654-688(1997).Lavrac&Dzero ski:Inductive Logic Programming:Techniques and Applications,Hert fo rdshire,Ellis Ho rwo o d(1994),Dzero ski,S.:Induct ive Lo gic Pro gramming and Kno wledge Disco very in Dat a

41、bases,In Fayyad et.al.Advances in Knowledge Discovery and Data Mining,pp.117-152,AAAI Press(1996).Quinlan,J.R.:Learning Lo gical Definit io ns fro m Relat io ns,Machine Learning,Vo l.5,pp.239-266(1990).Mugglet o n,S.:Induct ive Lo gic Pro gramming,New Generat io n Co mput ing,Vo l.8,pp.295-318(1991)

42、;Inverse Ent ailment and Pro go l,ibid.Vo l.13,pp.245-286(1995).King,R.D.et.al.:Relat ing Chemical Act ivit y t o St ruct ure:an examinat io n o f ILP successes,ibid.Vo l.13,pp-411-433(1995).ht t p:/gruffle.co mlab.o x.ac.uk/o ucl/gro ups/machlearn/TUT 2000/06/0745参考资料-人工知能学会特集大规模一夕7一久力jo知得,Vo l.12,

43、No.4(1997).Mit ch elly T.:Machine Learning,McGraw-Hi 11(1997).Michalski,R.,Brat o ko,I.&Kubat M.:Machi ne Learning and Dat a Mining Met ho ds and Applicat io ns,Jo hn Wiley&So ns(1998).Berry,M.J.A.&Lino ff,G.:Dat a Mining Techniques fo r Market ing,Sales,and Cust o mer Suppo rt,Jo hn Wiley&So ns(199

44、7).Adriaans,P.Zant in ge:Dat a Mining,Addiso n-WesIey(1996).山本、梅村IR:一叽共立(1998).Gro t h,R.:Dat a Mining:A Hands-On Appro ach fo r Business Pro fessio nals,Pren t ice Hal I PTR(1997).Quinlan J.R.:C4.5:Pro grams fo r Machine Learning,Mo rgan Kaufmann,1993.古川iR“Al仁一夕解析(1995).Piat et sky-Shapi ro:ht t p:

45、www.kdnugget s.co m/&ma i I i ng-1 i stIBM:Int el I igent Miner ht t p:/www.so ft ware.ibm.co m/dat a/iminer/index.ht ml SAS:Ent erprise Miner ht t p:/www.sas.co m/so ft ware/co mpo nent s/miner.ht ml SGI:MineSet ht t p:/www.sgi.co m/Pro duct s/so ft ware/MineSet/-学情辍处理研究七:/夕一 一夕解析(0k360知A”.ht t p:/

46、www.cIab.kwansei.ac.Jp/mining/index.ht mITUT 2000/06/0746十八漳三重!TUT 2000/06/0747Rule Induction asData Analysis Tool Rules accurat e?Yes.So ft ware available?Yes.Co mput ing fast?Yes.Easy underst anding?Yes.Po pular?No.TUT 2000/06/0748Po ssible Reaso ns Co nservat ive users Unix enviro nment No famili

47、ar examples To o many met ho ds To o many rulesSelf-evident rules Impressio ns:ad ho c met ho ds explo rat o ryTUT 2000/06/0749Respo nse o f Users fro m Expect ed Result sRegression by a few variables TSS=ESS+RSS100%99%1%Hypo t hesis co nfirmed=Sat isfact o ry wit h Dat ascape Rule induction A few s

48、imple rules b Average accuracy:,Sum o f co verage:99%99%Self-evident rules=Unsat isfact o ry wit ho ut Dat ascapeTUT 2000/06/0750What is Datascape?Quantification Pro blem quant ificat io n So lut io n quant ificat io n Multiple data dependencies Explanat io n fro m plural viewpo int s Co rrelat io n

49、 amo ng explanat io n variables Co ncise&levelwise deepening descript io ns Views of solution Inspect io n o f individual dat um Surro undings o f so lut io nTUT 2000/06/0751Answers to Datascape by Cascade Model Quant ificat io n by SS SS:sum o f squares Dat a dependencies Det ect io n o f lo cal in

50、t eract io ns Unified mechanism fo r Discriminat io n rules Charact erist ic rules Levelwise creat io n o f rule set sTUT 2000/06/0752Pro blem in decisio n t ree 1Heurist ic search is used t o get t he best t ree.Aa1a1a1a1a2MMMCC1C2C1C2C1C2C1C2 3b1b1tet2b1b1t2teaapnnnppnpTUT 2000/06/0753Pro blem in

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服