ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:1.26MB ,
资源ID:2610195      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2610195.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(立足课堂教学 聚焦“四能”培育——以“复数的几何意义”的教学设计为例.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

立足课堂教学 聚焦“四能”培育——以“复数的几何意义”的教学设计为例.pdf

1、2024年第2期总第91期【特设专栏:新青年数学教师工作室】立足课堂教学聚焦“四能”培育以“复数的几何意义”的教学设计为例杨元韡(江苏省常州高级中学,江苏常州213003)【摘要】文章以“复数的几何意义”的教学设计为例,探讨了如何立足课堂教学培育学生的“四能”,并给出了几点思考:把握学情,找准学生发现与提出问题的最近发展区;创设情境,营造学生发现与提出问题的适切场域;设计关联,提供学生发现与提出问题的时空机会;评价跟进,激发学生发现与提出问题的积极动机。【关键词】四能;发现问题;提出问题;复数的几何意义【作者简介】杨元韡,高级教师,江苏省常州高级中学数学教研组副组长,常州市中小学学科带头人,江

2、苏省卓越教师创新培育计划(2021年高中数学)培养对象,研究方向为数学教育。【基金项目】江苏省中小学教学研究课题“核心素养视角下高中数学建模的教学实践研究”(2021JY14-L56);常州市教育科学“十四五”规划课题“新高考背景下的高中数学课堂情境教学实践研究”(CJK-L2022294)一、引言普通高中数学课程标准(2017年版2020年修订)(以下简称“新课标”)提出了高中数学的课程目标:学生能获得进一步学习以及未来发展所必需的数学基础知识、基本技能、基本思想、基本活动经验(简称“四基”);提高从数学角度发现和提出问题的能力、分析和解决问题的能力(“四能”)。1其中,“四基”是数学学习的

3、载体,“四能”是发展数学核心素养的抓手。发现与提出问题的能力、分析与解决问题的能力,本质上是运算能力、推理能力、直观想象能力等多种数学基本能力的综合体现。一线教师往往更关注学生如何分析问题与解决问题,因此问题大多数由教师提出,很少让学生自己去发现、提出,导致“四能”的培育出现了一定程度的不平衡现象。问题的发现在数学教学中应该占有重要的位置。创新始于问题,发现往往是科学探究的基础。基于此,一些数学家认为在数学中发现结论比证明结论更重要。发现、提出、分析、解决问题的过程是科学探究需经历的全过程,显然,在教学中让学生经历这样的过程是很有价值的。2数学教育应让学生经历数学探究的过程,给他们提供探究、猜

4、想和提出问题的机会。3新课标提出“四能”,也提倡在教学过程中设计更多问题,并为学生提出问题创造情境。依据新课标,新修订的各版本教材相对于原先的教材而言,增强了趣味性、情境性、实践性以及与信息技术的结合性。如人教A版普通高中数学教科书的“拓广探索”栏目4和苏教版普通高中数学教科书的“探究拓展”栏目5等,提供了具有情境性或探究性的素材,让学生发现并提出问题。教师在用好、用足这些素材的同时,还要深入研究教材,挖掘更多的素材,努力实践“用教材教”。因此,如何立足课堂教学,全面培育“四能”,尤其是培育发现问题和提出问题的能力,是一个值得探讨的问题。本文以“复数的几何意义”的教学设计为例,谈谈对此的思考。

5、802024年第2期总第91期二、教学设计片段与说明教学设计片段1:观察与发现实数集中引入新数i后,进一步扩充成复数集,教师给出复数加法、减法、乘法、除法运算法则。设z1=a+bi,z2=c+di,其中a,b,c,dR。则z1+z2=(a+c)+(b+d)ib=d=0z1+z2=a+c;z1-z2=(a-c)+(b-d)ib=d=0z1-z2=a-c;z1 z2=(ac-bd)+(bc+ad)ib=d=0z1 z2=ac;设 z20,则z1z2=ac+bdc2+d2+bc-adc2+d2ib=d=0z1z2=acc2=ac。【问题1-1】在复数范围内进行四则运算,若令两个复数的虚部都为0时,大

6、家有什么发现?【预设】学生提出自己的发现:复数集上的四则运算法则限制在实数集上,与实数集上的四则运算法则是一回事。【设计意图】研究复数集上的四则运算需要考虑特殊的情形,即实数集上的四则运算,两个集合上的四则运算不能相互矛盾,要能够相容。体会到特殊化的过程,才能体会到复数集上的运算法则的合理性。这个特殊化的过程体现了一致性,后面研究复数的相关性质,总是要“回头看看”特殊情形实数的相关性质。【问题1-2】实数m的几何意义是什么?实数m的绝对值(即|m)的几何意义是什么?对于两个实数m,n,|m-n的几何意义是什么?【预设】学生能够回答:实数m的几何意义是数轴上的对应的点,|m的几何意义是数轴上的对

7、应点与原点的距离,对于两个实数m,n,|m-n的几何意义是数轴上对应的两点之间的距离。【问题1-3】如果我们研究复数的几何意义,你能不能提出你的猜想?【预设】学生提出:复数的几何意义可能也是点,复数的“绝对值”可能是表示复数的点与原点的距离,两个复数的差的“绝对值”的几何意义可能也是两点之间的距离。【设计意图】让学生感受新知识与旧知识之间的紧密联系,形成正向的迁移,即研究复数的相关性质可以从研究实数的相关性质入手。学生在感受复数集上的四则运算法则与实数集上的四则运算法则之间的关系的基础上,提出自己的发现,教师加以点评。以此为先例,教师以实数的相关问题切入,让学生自主提出与之“平行”的复数相关问

8、题。教学设计片段2:复数的几何意义的探索【问题2-1】实数的几何意义是数轴上的点,复数包括实数与虚数,复数的几何意义是什么样的点?我们只需要研究什么问题?【预设】学生提出:虚数的几何意义是什么?【问题2-2】你觉得虚数单位i用什么样的点表示?1+i用什么样的点表示?更一般地,a+bi(a,bR)用什么样的点表示?【预设】学生发现:数轴上的点“不够用”,提出引入坐标平面,用坐标平面上的相关的点表示。【问题 2-3】复数 z=a+bi(a,bR)与点(a,b)一一对应,这个对应合理吗?我们还要考虑什么问题?【预设】引导学生提出:复数z=a+bi(a,bR)与点(a,b)一一对应,特别地,当b=0时

9、,实数a与点(a,0)对应,也与原先的实数与数轴上的点一一对应一致。【问题2-4】还有哪些数学对象也与点对应,也用坐标表示?如果有,它们之间是不是一一对应的?【预设】学生联想到平面向量,从而建立三者之间的关系,进一步完善复数的几何意义。【设计意图】通过感受数轴上的点与实数是一一对应的,发现数轴上的点“不足以”表示复数。复数本质上是二元数,即复数z=a+bi(a,bR)由实部和虚部两者同时确定。通过考虑复数的“二元性”与实数的“一元性”的差别,学生联想到可以把数轴“扩充”成坐标平面来破解“数轴上的点不够用”的困境,同时将复数与坐标平面内的点(a,b)对应。此时,实数a对应复平面内的点(a,0),

10、该点在实轴上,保持“数轴上的点与实数一一对应”这一属性始终没有变化。这个教学片段中,在感受复数与实数差异(“二元性”与“一元性”差异)的基础上,学生能自然地联想并发现平面上的点也具有“二元性”,提出解决问题的方案便成为水到渠成的事812024年第2期总第91期情;在教师的引导下,学生能联想到平面向量也具有“二元性”,从而发现复数、复平面内的点、平面向量之间的一一对应关系,得出复数的多重几何意义。通过教师的引导,学生能得出以下结论:(1)需要建立坐标平面才能表示复数(教师顺势给出相关概念);(2)建立复数几何意义的关系图(如图1所示)。图1教学设计片段3:复数的模的几何意义的探索【问题3-1】结

11、合实数的绝对值以及图1所示关系图,如何规定复数z的“绝对值”?【预设】用两点间距离或对应的平面向量的模来定义,期望学生能够体会其合理性,即表达出复数的模的几何意义,理解其与实数的绝对值本质上是一致的。【问题3-2】实数集内有|z2=z2,你能提出怎样的问题?【预设】学生提出:|z2=z2在复数集内还成立吗?为什么?如果成立,请证明;如果不成立请举出反例。教师组织学生思考与讨论,得出“不一定成立”的结论。【问题3-3】能不能修改|z2=z2,使之在复数范围内也成立?【预设】让学生经历发现的过程:等式左边为实数,而右边未必是实数。一个复数与其共轭复数的积为实数,可以将右边改为z z,再尝试去验证|

12、z2=z z。【问题3-4】实数集内有|z1z2=|z1|z2,据此你还可以提出怎样的问题?【预设】学生提出:复数集内是否有同样的结论|z1z2=|z1|z2?如果成立,请证明;如果不成立,请举出反例。教师组织学生验证其成立。【问题 3-5】若复数 z 满足 z(2+i)=3+4i,则|z=。【预设】直接计算,或利用|z1z2=|z1|z2计算。【问题3-6】结合前面的一些问题,你还能猜想出复数的模可能满足的其他性质吗?【预设】学生得出|z1z2=|z1|z2(z20),|z1-|z2|z1z2|z1+|z2等。【设计意图】学生感受实数的四则运算法则、几何意义分别与复数的四则运算法则、几何意义

13、都是特殊与一般的关系,教师以此为先例,让学生联想实数的绝对值与复数的哪些概念相对应,结合实数的绝对值的几何意义联想复数模的几何意义是什么。这样,学生能自然地发现并提出相关问题及给出解决方案,如学生在感受实数绝对值的性质时,通过教师引导能自然联想到复数模的性质有哪些,然后提出自己的猜想,并证明或证伪(举反例说明)。学生经历真正的探究过程,自身的思辨能力也得以提升。特别是实数范围内性质|z2=z2如何推广到复数范围内性质|z2=z z,学生经历了举反例、不断修正的完整的探索过程,能进一步积累研究问题的活动经验。这个教学片段引导学生用联系的观点看待新知与旧知之间的关联,在旧的知识结构上继续建立并完善

14、新的知识结构。教学设计片段4:复数加减法、复数差的模的几何意义的探索【问题4-1】复数有加法运算,向量也有加法运算。设z1=a+bi,z2=c+di,其中a,b,c,dR,它们对应的向量分别为 OZ1=(a,b),OZ2=(c,d),则z1+z2对应的向量是什么?你还能提出怎样的问题?【预设】学生能正确回答前面的问题,期望学生能提出:z1-z2对应的向量是什么?z1 z2对应的向量是什么?(因为高中阶段学生只学习了向量的数量积,但其结果不为向量,因此我们暂不研究这个问题。)【问题 4-2】根据 z1-z2对应的向量是 OZ1-OZ2=Z2Z1,能得到|z1-z2的几何意义是什么吗?【预设】学生

15、能正确回答问题,期望学生能够体会其合理性,即表达出复数的差的模的几何意义与实数的差的绝对值的几何意义一致。【设计意图】通过具体问题,从向量的角度,建立复数的和、差、差的模的几何意义。822024年第2期总第91期三、教学思考提高学生分析或解决问题的能力是大多数数学教师关注的,那么,如何在课堂教学中聚焦发现与提出问题能力的培育?笔者认为教师应坚持以学生的发展为本,从培养创新性人才的基本要求出发,有意识地把培育学生发现与提出问题的能力落实到课堂教学的具体环节中。结合前面的教学设计,笔者认为可以从以下方面加以尝试。1.把握学情,找准学生发现与提出问题的最近发展区美国著名教育心理学家奥苏伯尔指出,影响

16、学习的唯一重要的因素就是学生已经知道了什么,要探明这一点,并应据此进行教学。事实上,学生能自然地发现与提出问题,教师也同样需要清楚学生已经知道了什么。作为数学教师,应认真把握学情,因为学情是教学的出发点,同时也是教学的落脚点。在了解学情的基础上,找准学生发现与提出问题的最近发展区,包括学生已有的知识与技能的储备与可能达到的知识与技能之间的差异,已有的直接或间接的活动经验与可能达到的直接或间接的活动经验之间的差异。如本案例中,学生在初中已经学习并熟悉实数、实数绝对值、实数差的绝对值的几何意义,这些可作为学生提出问题的已有知识储备。给出实数相关几何意义的问题,一方面为学生能提出与之“平行”的复数相

17、关问题提供样板,另一方面为学生后续能发现实数与复数的几何性质之间的关联做好铺垫。又如,在得出复数的模具有性质|z1z2=|z1|z2后,让学生猜想还有没有其他性质时,学生对实数绝对值性质的掌握可作为发现问题的已有的知识储备,可能提出|z1z2=|z1|z2(z20)或者|z1-|z2|z1z2|z1+|z2等。再如,在发现|z2=z2左边一定是实数,右边未必是实数,即等式对复数未必成立后,引导学生在修正的过程中提出如何使右边实数化,学生一旦联想到复数除法运算中分母实数化的方法,即复数乘以其共轭复数,便发现可能成立的新结论|z2=z z,这里的实数化方法是学生发现问题的已有的技能储备。2.创设情

18、境,营造发现与提出问题的适切场域高中数学课堂常常以问题为导向,以活动为载体,采用问题驱动式等教学方式展开。课堂教学过程中,教师应引导学生在问题解决时从发现、提出、分析、解决等多个方面入手,虽不必面面俱到,但不应完全集中于分析与解决这两个方面。培养学生发现与提出问题的能力,离不开教师创设适当的情境,离不开教师循序渐进地引导学生对数学对象进行深入思考。例如,本案例中给出了复数的运算法则限制在实数集上的法则与实数集上的法则是一致的,后面又出现了复数的模及模的性质限制在实数集上与实数的绝对值及其性质的多次对比,这实质上是多次类似情境的再现。复数的模的概念是实数绝对值概念的“继承与发扬”,复数的模的性质

19、也是实数绝对值性质的“继承与发扬”,前后两者在本质上都是一般与特殊的关系。前面几次对比依赖教师的主动引导,后面几次对比应努力引导学生自觉进行。如 学 生 能 从 z1-z2对 应 的 向 量 是 Z2Z1中 发 现|z1-z2=|OZ1-OZ2=|Z2Z1=(a-c)2+(b-d)2,用自然语言描述其意义后,又能自觉与实数的绝对值进行对比。学生能发现问题并且提出问题是学生在多次类似情境的熏陶下水到渠成的结果。这表明,教师有意识地创设情境,可以为学生自觉发现与提出问题提供“肥沃的土壤”。3.设计关联,提供发现与提出问题的机会课堂教学中,教师围绕课堂教学目标可以设计适切情境、问题(问题链)以及学生

20、活动,让学生循着“理解情境(或问题)参与活动发现关联提炼规律(结论)”的路径进阶,提高发现与提出问题的能力。如果教师能精心设计情境的各要素之间的关联性,设计问题链中各问题间的关联性,设计学生活动各环节之间的关联性,适当留白,就有可能为学生从中发现问题、提出问题提供时间或空间机会。例如,本案例中实数与复数的相关几何意义就是特殊与一般的关联,引导学生一次次经历从实数的相关几何意义猜想并给出复数的相关几何意义,再将复数的几何意义与实数的几何意义进行对比,说明合理性,形成多个思维的闭环,不断使相关知识与方832024年第2期总第91期法结构化。再如,“在实数集内有|z1z2=|z1|z2,在复数集内,

21、这个等式还成立吗?”与“若复数z满足z(2+i)=3+4i,则|z=”之间也有密切的关联,前者的解决为后者的解决提供了一种简洁的思路,但其中的关联要让学生自己去发现并运用。一旦得到|z1z2=|z1|z2在复数集内成立,则提出与之关联紧密的问题“你还能猜想复数的模可能满足的其他性质吗?”也是顺其自然的,学生依托实数的绝对值的性质联想复数的模的可能的性质。4.评价跟进,激发学生发现与提出问题的积极动机积极动机作为非智力因素,可以唤醒学生的学习动力。学生积极动机的形成从内部来讲,往往源于对某个学习对象的兴趣,而从外部来讲,常常源于教师或同伴对其学习态度,或学习过程,或学习成果的充分肯定。教师对学生

22、发现与提出的问题做出积极肯定的评价,或者在学生自我发现错误后做出激励性的评价,都可以激发并维持学生发现与提出问题的积极动机,也能激发学生强烈的好奇心与求知欲。实践表明,及时跟进对发现与提出问题的评价,能激发学生想进一步了解数学对象的迫切期望。这种条件下,学生对问题的思考与探究也将更为深入。例如,本案例中“若复数z满足z(2+i)=3+4i,则|z=”,学生用按部就班的方法求解后,笔者提问还有没有其他的好办法,学生若能结合前面的结论,就会发现利用两边取模的方法更为简洁。学生给出其他方法后,教师给予肯定的评价,学生的积极性会更为高涨。参考文献:1 中华人民共和国教育部.普通高中数学课程标准(201

23、7 年版 2020 年修订)M.北京:人民教育出版社,2020:8.2 黄翔,童莉,李明振,等.从“四基”“四能”到“三会”:一条培养学生数学核心素养的主线J.数学教育学报,2019(5):37-40.3蔡金法,姚一玲.数学“问题提出”教学的理论基础和实践研究J.数学教育学报,2019(4):42-47.4李海东,郭玉峰.普通高中教科书数学:必修第一册M.北京:人民教育出版社,2019:230.5单墫,李善良.普通高中教科书数学:必修第一册M.南京:江苏凤凰教育出版社,2020:213.(责任编辑:潘安)评价,具有传播汉字发展与中国文化的意义。在两个项目的展示过程中,信息技术的有效运用使课堂实

24、现了过程性评价与总结性评价的完美结合,同时也实现了评价内容和评价方式的丰富化,促进学生深入学习,激发他们的探索兴趣,加深师生与生生之间的交流。四、结语基于项目式学习的信息技术与英语教学融合的课堂具有成果化、拓展化、迁移化、深度化的特点,以成果为载体,为学生提供思维碰撞和展示的平台。在此过程中,教师要创设真实的情境,巧用信息技术设计有效学习工具,引导学生深度解读文本,在情境中综合运用所学知识与技能,在实践中深入体验与探究,充分拓展自我与社会和自然之间的联系,实现教学内容与实践活动的有效衔接,让学生能够在真实的情境项目中体验新知识、展示新成果,实现“以学生为中心”的课堂教学,打造素养化课堂。参考文献:1 中华人民共和国教育部.普通高中英语课程标准(2017 年版 2020 年修订)M.北京:人民教育出版社,2020.2夏雪梅.项目化学习设计:学习素养视角下的国际与本土实践M.2版.北京:教育科学出版社,2018.3赵旭辉,陈亚红.初中英语听说课教学中深度学习策略探究J.中小学外语教学(中学篇),2022(5):53-59.4王淑娟.美国中小学项目式学习:问题、改进与借鉴J.基础教育课程,2019(6):70-78.5郭华.项目学习的教育学意义J.教育科学研究,2018(1):25-31.(责任编辑:周彩珍)(上接第71页)84

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服