ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:861KB ,
资源ID:2578808      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2578808.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(坪线性代数教材习题参考答案提示.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

坪线性代数教材习题参考答案提示.doc

1、第一章  行列式与Cramer法则第一章知识清单1.行列式定义:说明1) 说明2):行列式中每行均由不同行不同列的元素之积构成2.计算方法基本方法: 1)化为三角式;2)降阶法:常用方法:  利用定义或性质,拆解法,升阶法,递推法。特殊行列式:上三角式,对角式,范德蒙行列式。3.行列式性质(5条)行列等同;两行互换值相反;数乘行列式;行列式加法;第三种初等行变换不改变行列式的值。4.克莱姆法则  解:,推论:基本作业建议 A组:1,4,6(1),7(1),8, 10(1);B组:一 (1),(6);二(3),(4)一(A)4(1):列标:54243,表明第四列有两

2、元素:否; (2):.一(A)5:.一(A)6(5):一(A)7(1),(2):同6(3),见课件例1.151.18。四种方法:;  一(A)7(3,5,6,7)同类型,见课件与课本例题1.9:。(3):,(5):,(6):(7):课本例题1.12一(A)7(4):拆解。一(A)7(8):见课本例题1.15.一(A)10:系数行列式=0.要求:耐心,细致!一(B)1(3):一(B)1(4):一(B)1(5),类一(A)5:一(B)1(6)(7)(10)同课本例题1.15:一(B)1(11)类同 一A(10)一(B)2(1) 特例法:一(B)2(2)类一(B)1(5),由定义:一(B)

3、2(3):排除法。请记忆结论(D)一(B)2(4),同一(A)10一(B)3(1),参见课件例1.18。类一(A)7(1),(2):一(B)3(2):。第二章 矩阵第二章知识清单1.矩阵的线性运算(加法与数乘)与矩阵的乘法注意:矩阵乘法无交换律与消去律.2.矩阵的逆与线性方程组的矩阵解法1)有关公式:; ,由此得: 2)有关方法:求逆矩阵:直接用定义(例:待定系数法);伴随阵法;初等变换法。解矩阵方程:逆矩阵法:初等变换法:3.转置阵的性质基本作业建议 A组:4, 6,9,10(4),14,15,17,18,19,24,28,29(4),(5);B组:一 (2),(6),(7);二(1)(9)

4、二(A)7:二(A)10 :方法一,归纳;方法二,二项式定理.例:10(4)二(A)16 :二(A)17:.二(A)18:二(A)19: 二(A)20:二(A)23(1): .   (2): . (3):.二(A)26:,.二(A)28:, .二(A)30:由一(A)7(1):,合题意. 二(A)31:类30:.二(B)1(1):;二(B)1(2): 二(B)1(3):分块对角阵。 二(B)1(4):.二(B)1(5):二(B)1(6):B可逆,于是:.二(B)1(7):二(B)1(7):二(B)1(8):方法一,归纳;方法二:, 即,。二(B)1(9):类二(B)(2): &nbs

5、p;,二(B)1(10):,二(B)2(1):排除法二(B)2(2):方法与答案同上二(B)2(3):利用对称阵的定义与性质二(B)2(4):排除法二(B)2(5):.二(B)2(6): 二(B)2(7):  二(B)2(8): 二(B)2(9): 二(B)2(10): 二(B)2(11): 二(B)2(12): 二(B)3(1): 二(B)3(2): 二(B)3():(略) 二(B)3(4),第一小题:二(B)3(4),第二小题: 二(B)3(4),第三小题: 二(B)3(5):二(B)3(6):二(B)3(7):另解:二(B)3(8):二(B)3(9):二(B)3(10):第一小

6、题:.二(B)3(10):,第二小题 二(B)3(11):二(B)3(12):。二(B)3(13):二(B)3(14):二(B)3(15):证:二(B)3(16):第三章  向量与线性方程组 基本作业建议 A组: 5,7(奇数),8,12,14,17,21,22;B组:一 (2),(6),(8),9;二(1)(11),其中(8)题以去掉“不”。三(A)2(2):三(A)5(1) 方法一(初等变换不改变列向量组的线性相关性):表达式是唯一的。方法二(线性表出的等价命题):,得唯一解:表达式唯一存在。三(A)5(2): 证明如下:解得:三(A)6(1): 三(A)6(2): 三(A)6(

7、3): 三(A)7: 三(A)8(1): 三(A)8(2): 三(A)9:类同 三(A)8(1)。三(A)10理解:线性相关;线性无关。三(A)10(1):由已知,线性相关;线性无关,由此得证。三(A)10(2):,故不能.三(A)11: ,方法二:三(A)12:依据:初等行变换不改变列向量组的线性相关性.例如:三(A)13:化为行阶梯型。三(A)14:操作如下:,再观察之。三(A)15:则A中任何一个向量均可由(否则,设A中的不能由,于是:线性无关,这与矛盾),故是A中的一个极大无关组.另证:是A的一个极大无关组. 三(A)16-19: 基本题型 .略。三(A)20:  所求三(A)21,22:典型习题,务必重视!三(B)1(1):对应分量成比例。三(B)1(2):三(B)1(3):三(B)1(4):三(B)1(5):三(B)1(6):三(B)1(7):三(B)1(8):三(B)1(9): 类同三(A)20.三(B)1(10):三(B)1(11):三(B)1(12):.三(B)1(13):类同三(B)7. ,三(B)1(14):解空间的维数为. 由此推出:,解之即可。三(B)1(15):四(A)26:14 / 14

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服