1、课时达标检测(三十八) 直线、平面平行的判定与性质练基础小题强化运算能力1设,是两个不同的平面,m,n是平面内的两条不同直线,l1,l2是平面内的两条相交直线,则的一个充分不必要条件是()Aml1且nl2 Bm且nl2Cm且n Dm且l1解析:选A由ml1,m,l1,得l1,同理l2,又l1,l2相交,所以,反之不成立,所以ml1且nl2是的一个充分不必要条件2设m,n是不同的直线,是不同的平面,且m,n,则“ ”是“m且n ”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:选A若m,n,则m且n;反之若m,n,m且n,则与相交或平行,即“ ”是“m且n ”的充
2、分不必要条件3下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A B C D解析:选C对于图形,平面MNP与AB所在的对角面平行,即可得到AB平面MNP;对于图形,ABPN,即可得到AB平面MNP;图形无论用定义还是判定定理都无法证明线面平行4已知正方体ABCDA1B1C1D1,下列结论中,正确的结论是_(只填序号)AD1BC1;平面AB1D1平面BDC1;AD1DC1;AD1平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1BC1,从而
3、正确;易证BDB1D1,AB1DC1,又AB1B1D1B1,BDDC1D,故平面AB1D1平面BDC1,从而正确;由图易知AD1与DC1异面,故错误;因AD1BC1,AD1平面BDC1,BC1平面BDC1,故AD1平面BDC1,故正确答案:5.如图所示,在四面体ABCD中,M,N分别是ACD,BCD的重心,则四面体的四个面所在平面中与MN平行的是_解析:连接AM并延长,交CD于E,连接BN,并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,连接MN,由,得MNAB.因此,MN平面ABC且MN平面ABD.答案:平面ABC、平面ABD练常考题点检验高考能力一、选择题1下列命
4、题中,错误的是()A一条直线与两个平行平面中的一个相交,则必与另一个平面相交B平行于同一平面的两个不同平面平行C如果平面不垂直平面,那么平面内一定不存在直线垂直于平面D若直线l不平行平面,则在平面内不存在与l平行的直线解析:选DA中,如果假定直线与另一个平面不相交,则有两种情形:在平面内或与平面平行,不管哪种情形都得出这条直线与第一个平面不能相交,出现矛盾,故A正确;B是两个平面平行的一种判定定理,B正确;C中,如果平面内有一条直线垂直于平面,则平面垂直于平面(这是面面垂直的判定定理),故C正确;D是错误的,事实上,直线l不平行平面,可能有l,则内有无数条直线与l平行2已知直线a,b,平面,则
5、以下三个命题:若ab,b,则a;若ab,a,则b;若a,b,则ab.其中真命题的个数是()A0 B1 C2 D3解析:选A对于,若ab,b,则应有a或a,所以是假命题;对于,若ab,a,则应有b或b,因此是假命题;对于,若a,b,则应有ab或a与b相交或a与b异面,因此是假命题综上,在空间中,以上三个命题都是假命题3已知直线a,b异面,给出以下命题:一定存在平行于a的平面使b;一定存在平行于a的平面使b;一定存在平行于a的平面使b;一定存在无数个平行于a的平面与b交于一定点则其中正确的是()A BC D解析:选D对于,若存在平面使得b,则有ba,而直线a,b未必垂直,因此不正确;对于,注意到过
6、直线a,b外一点M分别引直线a,b的平行线a1,b1,显然由直线a1,b1可确定平面,此时平面与直线a,b均平行,因此正确;对于,注意到过直线b上的一点B作直线a2与直线a平行,显然由直线b与a2可确定平面,此时平面与直线a平行,且b,因此正确;对于,在直线b上取一定点N,过点N作直线c与直线a平行,经过直线c的平面(除由直线a与c所确定的平面及直线c与b所确定的平面之外)均与直线a平行,且与直线b相交于一定点N,而N在b上的位置任意,因此正确综上所述,正确4设l,m,n表示不同的直线,表示不同的平面,给出下列三个命题:若ml,且m,则l;若l,m,n,则lmn;若m,l,n,且n,则lm.其
7、中正确命题的个数是()A0 B1 C2 D3解析:选C正确;中三条直线也可能相交于一点,故错误;正确,所以正确的命题有2个5(2017襄阳模拟)如图,在正方体ABCD A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()AMN与CC1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行解析:选D如图所示,连接AC,C1D,BD,则MNBD,而C1CBD,故C1CMN,故A、C正确,D错误,又因为ACBD,所以MNAC,B正确6.如图,矩形ABCD中,E为边AB的中点,将ADE沿直线DE翻转成A1DE.若M为线段A1C的中点,则在ADE翻转过程中,正确的命题是()|B
8、M|是定值;点M在圆上运动;一定存在某个位置,使DEA1C;一定存在某个位置,使MB平面A1DE.A BC D解析:选B取DC中点N,连接MN,NB,则MNA1D,NBDE,平面MNB平面A1DE,MB平面MNB,MB平面A1DE,正确;A1DEMNB,MNA1D定值,NBDE定值,根据余弦定理得,MB2MN2NB22MNNBcos MNB,所以MB是定值正确;B是定点,所以M是在以B为圆心,MB为半径的圆上,正确;当矩形ABCD满足ACDE时存在,其他情况不存在,不正确所以正确二、填空题7过三棱柱ABC A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1 平行的直线共有_条解析:过
9、三棱柱ABC A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共有6条答案:68正方体ABCD A1B1C1D1的棱长为1 cm,过AC作平行于体对角线BD1的截面,则截面面积为_cm2.解析:如图所示,截面ACEBD1,平面BDD1平面ACEEF,其中F为AC与BD的交点,E为DD1的中点,SACE (cm2)答案:9,是三个平面,a,b是两条直线,有下列三个条件:,b;a,b;b,a.如果命题“a,b,且_,则ab”为真命题,则可以在横线处填入
10、的条件是_(填上你认为正确的所有序号)解析:,a,bab(面面平行的性质)如图所示,在正方体中,a,b,a,b,而a,b异面,故错b,b,aab(线面平行的性质)答案:10.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是_解析:设k(0k1),1k,GH5k,EH4(1k),周长82k.又0k1,周长的范围为(8,10)答案:(8,10)三、解答题11.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点求证:(1)BE平面DMF;(2)平面BDE平面MNG.证明:(1)连接AE,则AE必过D
11、F与GN的交点O,连接MO,则MO为ABE的中位线,所以BEMO,又BE平面DMF,MO平面DMF,所以BE平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DEGN,又DE平面MNG,GN平面MNG,所以DE平面MNG.又M为AB的中点,所以MN为ABD的中位线,所以BDMN,又MN平面MNG,BD平面MNG,所以BD平面MNG,又DE,BD平面BDE,DEBDD,所以平面BDE平面MNG.12.如图所示,在三棱柱ABC A1B1C1中,侧棱AA1底面ABC,ABBC,D为AC的中点,AA1AB2.(1)求证:AB1平面BC1D;(2)设BC3,求四棱锥B DAA1C1的体积解:(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,如图所示四边形BCC1B1是平行四边形,点O为B1C的中点D为AC的中点,OD为AB1C的中位线,ODAB1.OD平面BC1D,AB1平面BC1D,AB1平面BC1D.(2)AA1平面ABC,AA1平面AA1C1C,平面ABC平面AA1C1C.平面ABC平面AA1C1CAC,连接A1B,作BEAC,垂足为E,则BE平面AA1C1C.ABAA12,BC3,ABBC,在RtABC中,AC,BE,四棱锥B AA1C1D的体积V(A1C1AD)AA1BE23.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100