ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:877.02KB ,
资源ID:2560845      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2560845.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高数A1空间解析几何与向量代数(答案).doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高数A1空间解析几何与向量代数(答案).doc

1、第八章 空间解析几何与向量代数 1自点分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。解:按作图规则作出空间直角坐标系,作出如图平行六面体。平面,垂足的坐标为;平面,垂足的坐标为;平面,垂足的坐标为;轴,垂足的坐标为;轴,垂足的坐标为;轴,垂足的坐标为。2在平面上,求与三点、和等距离的点。解:设所求点为 则, ,。由于与、三点等距,故,于是有:, 解此方程组,得,故所求的点为。3已知,求的模、方向余弦与方向角。解:由题设知: 则 ,于是,。4已知,求下列各向量的坐标: (1);(2);(3);(4)解:(1) ;(2);(3); (4)5设向量的方向余弦分别满足(1);(2);(3),问这些

2、向量与坐标轴或坐标面的关系如何?解:(1),向量与轴的夹角为,则向量与轴垂直或平行于平面;(2),向量与轴的夹角为,则向量与轴同向;(3),则向量既垂直于轴,又垂直于轴,即向量垂直于面。6分别求出向量,及的模,并分别用单位向量,表示向量,。解:,。7设,和,求向量在轴上的投影及在轴上的分向量。解: 故在轴上的投影为13,在轴上的分向量为。8在坐标面上求一与已知向量垂直的向量。解:设所求向量为,由题意, 取,得,故与垂直。当然任一不为零的数与的乘积也垂直。9求以,为顶点的三角形的面积。解:由向量的定义,可知三角形的面积为,因为,所以,于是, 10求与向量,都垂直的单位向量。解:由向量积的定义可各

3、,若,则同时垂直于和,且,因此,与平行的单位向量有两个:和11设三向量,满足,试证三向量,共面。证:由有 两边与作数量积,得由于,所以,从而,共面。12将坐标面上的抛物线绕轴旋转一周,求所生成的旋转曲面的方程。解:由坐标面上的曲线绕一坐标轴旋转时生成的曲面方程的规律,所得的旋转曲面的方程为,即。13画出下列各方程所表示的曲面:a/2 (1) o (1);(2);(3)。 2 3(2) (3)14指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形?(1);(2);(3);(4)。方程在平面解几中表示在空间解几中表示平行于轴的一直线与平面平行且过的平面斜率为1,在轴截距为1的直线平行于轴

4、,过(0,1,0),(-1,0,1)的平面圆心在原点,半径为2的圆以过轴的直线为轴,半径为2的圆柱面双曲线母线平行于轴的双曲柱面15说明下列旋转曲面是怎样形成的? (1);(2)。解:(1)由坐标面上的双曲线,绕轴旋转一周或是坐标面上的双曲线,绕轴旋转一周得到。(2)是坐标面上关于轴对称的一对相交直线,即和中之一条绕轴旋转一周;或是坐标上关于轴对称的一对相交直线,即和中之一条,绕轴旋转一周。16指出下列方程组在平面解析几何与空间解析几何中分别表示什么图形? (1);(2)解:(1)在平面解析几何中表示两直线的交点;在空间解析几何中表示两平面的交线;(2)在平面解析几何中表示椭圆与其一切线的交点

5、;在空间解析几何中表示椭圆柱面与其切平面的交线。17分别求母线平行于轴及轴而且通过曲线的柱面方程。解:10从方程组中消去得:,此方程即母线平行于轴且通过已知曲线的柱面方程;20从方程组中消去得:,此方程即母线平行于轴且通过此曲线的柱面方程。18求球面与平面的交线在面上的投影的方程。解:由,得,代入,消去得,即,这就是通过球面与平面的交线,并且母线平行于轴的柱面方程,将它与联系,得:,即为所求的投影方程。19求平面与面的夹角。解:为此平面的法向量,设此平面与的夹角为,则,故。20分别按下列条件求平面方程 (1)平行于面且经过点; (2)通过轴和点; (3)平行于轴且经过两点和。解:(1)因为所求

6、平面平行于面,故为其法向量,由点法式可得:,即所求平面的方程:。(2)因所求平面通过轴,其方程可设为,已知点在此平面上,因而有,即,代入(*)式得:,即所求平面的方程为:。(3)从共面式入手,设为所求平面上的任一点,点和分别用,表示,则,共面,从而,于是可得所求平面方程为:。21用对称式方程及参数式方程表示直线:。解:因为直线的方向向量可设为,在直线上巧取一点(令,解直线的方程组即可得,),则直线的对称式方程为,参数方程为:,。22求过点且与两平面和平行的直线方程。解:因为两平面的法向量与不平行,所以两平面相交于一直线,此直线的方向向量,故所求直线方程为。23求直线与平面的夹角。解:已知直线的

7、方向向量,已知平面的法向量,而,所以,故直线与平面的夹解为0。24确定直线 和平面间的位置关系。解:直线的方向向量 平面的法向量 从而,由此可知直线平等于平面或直线在平面上。再将直线上的点的坐标代入平面方程左边,得,即不在平面上,故直线平行于平面。25设,证明、三点共线。解:因为所以 即,共线,为公共点,故、三点共线。26设有两个力,和,同时作用于一个点上,试求它们的合力的大小和方向。解:设 于是, 得:,故其方向余弦为 ,从而方向角为:,。27设向量的两个方向余弦为,又,求的坐标。解:因为,故 。 由公式, , , 于是得或。28证明垂直于。证:,故。29已知三点,且,求(1)与的夹角;(2

8、)在上的射影。解:,; ,;,;可设,;因而可得:(1),所以; (2)。30求出球面与旋转抛物面的交线。解:两曲面的交线为,将(2)代入(1)得,所以或,由(2)知,故取。因此交线方程为或。这是在平面上圆心为,半径为2的圆曲线。31求过点而与直线,平行的平面方程。解:因为直线的方向向量, 直线的方向向量。 取 ,则通过点并以为法向量的平面方程即为所求的平面方程。32求点在平面上的投影。解:从点作平面的垂线,则垂线的方向向量就是平面的法向量,所以垂线方程为。为求出垂足,将垂线方程化为参数方程,将其代入平面方程,得,求得垂足(即投影)的坐标为。33求点到直线的距离。解一:因为已知直线的方向向量,由平面的点法式方程得,过点且垂直于直线的平面方程为。解方程组,得垂足的坐标,于是,即为所求的距离。解二:在直线上任取点,以,为邻边的平行四边形的面积,点到直线的距离为,而,于是,而,故。34设, ,为单位向量,且满足,求。解:因为,所以。而,同理可知:;,于是。35作出曲面与平面、三坐标面所围的立体,在第一卦限部分的立体图形。36求通过点且与两直线:,:都相交的直线方程。解:设所求直线的方向向量为则所求直线:,因为与、都相交,而过,方向向量为,过,方向向量,所以有,即,即。由上两式得,显然有,即,所以所求直线的方程为。12

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服