ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:546KB ,
资源ID:2559702      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2559702.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(函数解析式求法和值域求法总结及测验题.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

函数解析式求法和值域求法总结及测验题.doc

1、函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法例1 设是一次函数,且,求解:设,则, 二、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法但要注意所求函数的定义域不是原复合函数的定义域,而是的值域例2 已知 ,求 的解析式解:, , 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式与配凑法一样,要注意所换元的定义域的变化例3 已知,求解:令,则, , , 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称

2、点 则 ,解得: ,点在上 , 把代入得:整理得, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式例5 设求解 显然将换成,得: 解 联立的方程组,得:六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令 得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式例8 设是定义在

3、上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 令式中的x1,2,n1得:将上述各式相加得:, , 函 数 值 域 求 法 小 结1重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键

4、是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域常见函数的值域:一次函数的值域为R二次函数,当时的值域为,当时的值域为反比例函数的值域为指数函数的值域为对数函数的值域为R正,余弦函数的值域为,正,余切函数的值域为R3求函数值域(最值)的常用方法一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)1、求的值域解:由绝对值函数知识及二次函数值域的求法易得:2、求函数的值域分析:首先由0,得+11,然后在求其倒数即得答案解:0+11,

5、0,函数的值域为(0,1二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)1、求函数的值域解:设,配方得:利用二次函数的相关知识得,从而得出:说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:2、若,试求的最大值。解:本题可看成一象限动点在直线上滑动时函数的最大值易得:,y=1时,取最大值2三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义

6、域的方法求原函数的值域。1、求函数的值域解:因本题中分子、分母均只含有自变量的一次型,易反解出x,从而便于求出反函数。反解得即故函数的值域为:。(反函数的定义域即是原函数的值域)2、求函数的值域解答:,因为,所以,算出值域为四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为的形式,再利用判别式加以判断)1、求函数的值域解:由于本题的分子、分母均为关于x的二次形式,因此可以考虑使用判别式法,将原函数变形为:整理得:当时,上式可以看成关于的二次方程,该方程的范围应该满足,即此时方程有实根即,注意:判别式法解出值域后一定要将端点值(本题是)代回方程检验将分别代入检验得不符合方程

7、,所以2、求函数的值域解答:先将此函数化成隐函数的形式得:,(1)这是一个关于的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判别式,解得:五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)1、求函数的值域解:由于题中含有不便于计算,但如果令:注意从而得:变形得即:注意:在使用换元法换元时一定要注意新变量的范围,否则将会发生错误六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)1、求函数的值域。分析:此题首先是如何去掉绝对值,将其做成一个分段函数在对应的区间内,画出此函数的图像,

8、如图1所示,易得出函数的值域为七、不等式法(能利用几个重要不等式及推论来求得最值(如:),利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取成立的条件)1、求函数的值域解答:,当且仅当时取等号注意:在使用此法时一定要注意的前提条件是a0,b0,且能取到ab八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为(常数)的形式)1、求函数的值域解答:观察分子、分母中均含有项,可利用部分分式法;则有不妨令:从而注意:在本题中应排除,因为作为分母。所以故2、如对于函数,利用恒等变形,得到:,容易观察得出

9、此函数的值域为注意到分时的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)十、利用导数求函数的值域(若函数f在(a、b)内可导,可以利用导数求得在(a、b)内的极值,然后再计算在a,b点的极限值。从而求得f的值域)十一、最值法(对于闭区间a,b上的连续函数y=f(x),可求出y=f(x)在区间a,b内的极值,并与边界值f(a)、f(b)作比较,求出函数的最值,可得到函数y的值域)十二、构造法(根据函数的结构特征,赋予几何图形,数形结合)十三、比例法(对于一类含条件的函数的值域的求法,可将条件转化为比例

10、式,代入目标函数,进而求出原函数的值域)9 / 9配 套 练 习求函数的解析式例1已知f (x)= ,求f ()的解析式 ( 代入法 / 拼凑法 )变式1已知f (x)= , 求f ()的解析式变式2已知f (x+1),求f (x)的解析式例2若f f (x)4x3,求一次函数f (x)的解析式 ( 待定系数法 )变式1已知f (x)是二次函数,且,求f (x)例3已知f (x)2 f (x)x ,求函数f (x)的解析式 ( 消去法/ 方程组法 )变式1已知2 f (x) f (x)x1 ,求函数f (x)的解析式变式2已知2 f (x)f 3x ,求函数f (x)的解析式例4设对任意数x,y均有,求f(x)的解析式 ( 赋值法 / 特殊值法)变式1已知对一切x,yR,都成立,且f(0)=1, 求f(x)的解析式求函数的值域例6求下列函数的值域 , x1,2,3,4,5 ( 观察法 ) ,x( 配方法 :形如 )( 换元法:形如 )( 分离常数法:形如 ) ( 判别式法:形如 )变式1求下列函数的值域 y

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服