ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:2.99MB ,
资源ID:2558999      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2558999.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于MPC的履带车步进行驶控制器设计.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于MPC的履带车步进行驶控制器设计.pdf

1、现代极械/ModernMachineryXiandai Jixie基于MPC的履带车步进行驶控制器设计宋秋杰,熊树生一(浙江大学,浙江杭州3 10 0 12)摘要:针对摊铺后处理履带车人工步进行驶易与摊铺路面发生碰撞,且难以摆正终点的车辆位置的问题,设计了一种基于MPC的履带车步进行驶控制器。该控制器基于四次多项式轨迹规划,规划步进轨迹,依据碰撞约束及终点平稳性设计目标函数;基于四次多项式规划结果,采用非线性MPC算法及线性MPC耦合PID算法进行轨迹跟踪仿真对比。仿真结果表明,控制器满足碰撞约束及轨迹平稳性要求,线性MPC算法实时性及轨迹跟踪效果更好,对提高路面摊铺后处理质量有重要意义。关键

2、词:履带车步进行驶轨迹规划轨迹跟踪MPC仿真验证中图分类号U461.1Abstract:The manual walking of the crawler vehicle is easy to collide with the paved road after paving,and it is difficult toadjust the position of the vehicle at the end point.Therefore,a walking controller for crawler vehicles based on MPC is de-signed.The contro

3、ller carries out trajectory planning based on quartic polynomial,and designs the objective function accord-ing to collision constraints and terminal stationarity.Based on the quartic polynomial planning results,the nonlinear MPC al-gorithm and linear MPC coupled PID algorithm are used for trajectory

4、 tracking simulation comparison.The simulation resultsshow that the controller meets the requirements of collision constraints and trajectory stability,and the linear MPC algorithmhas better real-time performance and trajectory tracking effect.This study is of great significance for improving the qu

5、ality ofpost-pavement processing.Keywords:crawler vehicle walking,trajectory planning,tracking,MPC,simulation文献标识码:ADesign of walking controller for crawler vehicle based on MPCSONG Qiujie,XIONG Shusheng文章编号:10 0 2-6 8 8 6(2 0 2 4)0 1-0 0 9 2-0 70引言机场跑道建设是机场建设的重中之重,基于滑模摊铺的混凝土施工技术多应用于机场停机坪等大面积混凝土摊铺工程

6、,可以在保证施工质量、效率的同时控制成本,近年来逐渐成为机场道路摊铺的主流方案 。由于滑模摊铺特殊的施工方式,尽管摊铺机能够快速高质量完成摊铺作业,其铺设的道面仍需要人工进行抹平抹光、拉毛养护等后处理工作,如图1所示。我国滑模摊铺技术引人较晚,缺乏高素质的摊铺后处理技术工人,往往需要投人大量人力完成后处理工作,人工处理速度慢,道面后处理质量参差不齐,提高了施工成本的同时极大地影响了道路摊铺效率。92图1滑模摊铺及其人工后处理针对上述问题,呕需一种自动化后处理作业车,代替人工进行道面后处理工作。本文基于该智能车工作的重难点,对其行驶控制器进行理论分析与开发设计,实现后处理智能车自动步进行驶功能,

7、为项目开发奠定理论基础。1智能车动力学建模根据施工要求,本文研究对象的结构示意图如图2 所示。自动控制2024 年第 1期Autocontrol阻力矩。电池组行走支撑驱动履带机构底盘操作台抹平工作机构平台图2 摊铺后处理智能车结构示意图如图所示,该车为履带车,由于履带结构的特殊性,其在正常行驶的过程中必然伴随着较为明显的滑移滑转现象,因此该车的运动学模型示意图如图3 所示 2 图中,考虑滑移滑转时,O,为转向中心,u1r为低速侧履带实际速度,2,为高速侧履带实际速度,,为履带车实际速度,,为车辆实际横摆角速度,R,为车辆实际转向半径,B为左右履带间距。不考虑滑移滑转时,为车辆横摆角速度,为低速

8、侧履带速度,2 为高速侧履带速度,R为履带车转向半径。由图可知,相较于无滑移滑转的情况,实际履带车低速侧履带速度增加,高速侧履带速度减小,车辆转向半径增大。根据运动学关系,可以得到:U2-U1r,=BB.U1r+U2rR,2U2,-V1r考虑滑移滑转的动力学示意图如图4 所示。图中,0 1、0,分别为左右履带的瞬时转动中心,A1、A 2分别为左右履带的转向极(即瞬时转动中心距履带中心的距离),P(,i)、Q(x 2,y 2)分别为左右履带上的一点,,vU分别为P、Q 点相对地面的滑动速度,和u分别为P点滑动速度在轴和y轴上的分量,和分别为Q点滑动速度在轴和y轴上的分量,F,和F,分别为P、Q

9、点受到的滑动摩擦力,和分别为,和各自履带中轴线的夹角,Fi、Fz分别为左右履带受到的纵向滑动摩擦力,f和f分别为左右履带受到的行驶阻力,是由履带车机械结构决定的。M,和M,分别为左右履带受到的行驶,QRF图4 展履带车动力学示意图根据几何关系结合力学分析可得:RdF.RdF2图3 履带车运动学示意图dMyising,LdM20由于履带受力均匀且忽略履带宽度的影响,因此有:GdF,=dF.ddy2L式中,G为车辆重量,为地面摩擦因数。根据运动学原理有:oy=0,A,=0,A,=0,y1Lu4x=w,y2(1)对低速侧履带中心点取矩,根据力与力矩平衡条件可以得到:F2-F-fG=0F,B-M,-M

10、,-JCB,式中,f为行驶阻力系数。联立上述公式,解超越方程即可求得未知量A,和A2。根据运动学关系可得:V2一V。qyBR,+R,22在左右履带理论线速度和z已知的情况下,根据已求得的AI、A 2,结合公式(5)和公式(6)即可求得,和R。至此,履带车动力学模型求解完成。U2-U1(7)B+A,-A,93AMAcosO10y2sind,=02BLF2B0cosO20Q2MdF,PLdF.(2)(3)(4)(5)(6)现代极械Modern MachineryXiandai JixieB1+V2A2U1R.2U2-U12四次多项式步进轨迹规划2.1轨迹规划坐标转换四次多项式轨迹曲线表达式如下:S

11、=K,S,+K,S,+K,S,+K4S,+Ks(9)式中,S为前方车道线上某点相对摄像头所在直线的横向偏移距离,S,为车道线上某点距摄像头的纵向距离。K,K,为三次多项式系数。对于沿该多项式行驶的车辆,其横向加速度与纵向距离的对应关系为:Cri(S)=24K,*S,+6K,步进轨迹需要保6证沿该轨迹行驶的履带车不会与待施工路面发生碰撞,履带车接地部分仅有两侧履带,因此在碰撞分析时仅需考虑履带与路面的接触情况。为便于分析,将履带简化为长为L,宽为b的长方形,两侧履带中心距为B,左右履带内侧顶点分别为M、N、P、Q,如图5 所示。设沿轨迹行2.3轨迹规划优化函数设计驶的履带车几何为保证步进的整个过

12、程中履带车行驶平滑稳定中心点的坐标为且步进结束时平稳停车,定义关于车辆最大曲率、最Q(x,y),履带车大急动度及终点曲率的代价函数 3 :横摆角为中,如图J=ap?+bf+co26 所示,则四个顶其中,为轨迹最大曲率,为轨迹最大急动度,为图6轨迹上某点的坐标转换过几何关系求得。M点坐标为:B6M=xsind(22(B6cosd十22N点坐标为:(B6XN=Xsind(22(B6cosd十(2294P点坐标为:1V2(8)U2-1(10)MB图5履带简化与参数定义点的坐标可以通轨迹终点曲率,、b、c 为权重系数。最大曲率、最大急动度的求解会在每一次迭代中再求解一次参数极值,若采用优化算法进行迭代

13、Lcosd2(11)LsindLcosd2(12)Lsind2Bbx=x+sind(22(Bcosd(22Q点坐标为:XQ=x+B6sind(22(Bcos222.2轨迹规划碰撞约束为使履带车行驶时不会与待施工路面产生碰撞,需要对履带顶点位置做出限制,设待施工路面宽度为D,安全距离为i,如图7 所示。则M、N、P、Q 的纵坐标距离中轴线的距离均应大于2+i,即:2min(I yml,I ynl,I yp/,Iyo1)求解,理论较为复杂且算力要求较高。为满足工程需求,将最大曲率和最大急动度用插值代替,即:NendJ=Z(a,p+bji)+co?三式中t代表采样时刻。由于四次多项式曲线是连续且平滑

14、的,因此只要采样频率足够,且每项插值均满足约束条件,则插值优化函数可以保证整个曲线接近最优曲线。Lcosd2(13)Lsind十2Lcosd2(14)Lsind2图7 码碰撞约束D+i2(15)(16)(17)(28)自动控制2024 年第 1期Autocontrol在整个步进过程中,定义(t)为采样时刻t的3.2非线性MPC理论模型车辆运动状态,S为整个步进过程中的运动状态合根据车辆运动学规律,履带车在步进过程中满足:集。即:vcosdd(t)=pji,ye,Vt e 1,Nendusind二(18)S=(1),(2),.(Nend)(19)用lr(t)、h r(t)分别表示在采样时刻t,车

15、辆的运动状态约束,并用LR和HR分别表示整个步进过程中的上下边界条件。即:lr(t)=Pmimn jmin,ymin,min hr(t)=pm:jmx,ymx,mx(LR=lr(1),lr(2),lr(Nend)(HR=hr(1),hr(2),.,hr(Nend)T综上所述,四次多项式轨迹规划优化函数为:NendminJ=Z(a.pi+b.j)+co?1=1s.t.LR SHR至此,四次多项式轨迹规划转化为求解上述优化问题,通过设置合适的权重系数,利用 MATLAB提供的fmincon 函数,采用默认的内点法或有效集法即可求得优化后的四次多项式轨迹3MPC轨迹跟踪控制器设计3.1MPC基本原理

16、模型预测控制机理如图8 所示 4 ,包含三个重要环节:预测模型、滚动优化、反馈矫正。基于本文讨论的轨迹跟踪控制问题,三个环节的内容可以概括为:参考轨迹图8 MPC基本原理1)预测模型:即车辆动力学模型。2)滚动优化:在下一时刻,需要再次测量该时刻的状态量,并将其作为初始条件重新进行优化求解。3)反馈矫正:状态量与参考量之间的差值作为反馈信息,构成整体的闭环控制。(23)根据以上公式,取状态量:X=x,y,控制量:u=u,。对于履带车控制系统,任意时刻的状态量和控制量均满足:X=f(X,u)Vt=1,Nend某一时刻,在任一点(Xr,u)处,根据泰勒定理,Vt=1,Nend保留一阶项,忽略高阶项

17、得:(20)x,=/x,u,)+(X.u)+fX,u)X=X,(u-u.)(21)u=ur根据公式(2 3)(2 4)和(2 5),状态量误差的变化量为:X=X-X,(22)af(x,u):(x-x.)+X)u=u00-v,sind,二00U,cosd,LO0cosd,0sind,001定义离散时间间隔为T,对公式(2 6)进行前向欧拉离散化可得:X(k+1)=(Ta,+E)x(k)+Tb,u(k)=ax(k)u(h)y(k)滚动优化被控对象x(h)反馈控制预测模型(24)X-X)XX=X=X=Xu=urx-,y-yr+0-.=ax+bu+6,u(h)在非线性MPC 控制算法中,采用目标函数:

18、NJ(k)=Z lx(k+i)-Xg(k+i)/+i=1N-1ZIAu(k+i)+po2i=1Wmins.t.Auminmin(25)u(26)(27)WmaxAukAummaxXhXmax95现代极械Modern MachineryXiandai Jixie该目标函数中的第一项反映了该控制算法对目标轨迹的跟踪能力,第二项反映了该控制算法中控制量变化的平稳性,第三项p为权重,为松弛因子,避免出现优化问题无解的情况。3.3线性MPC理论模型为便于理论分析,定义新的状态变量(k)=(k),u(h-1),对新的状态变量离散化可得:ak(k+1)=0=A,s(k)+B,Au(k)X(k)n(k)=IN

19、.0u((k-1)其中,N。=2 为控制量个数,N,=3为x的状态量个数,为状态量输出方程。在满足控制精度的情况下,尝试简化计算,做出如下假设:对控制周期内任一时刻下的状态方程有,A,=A,k E 1,t+N-1B,=B,k E 1,.,t+N-1在该假设条件下,对公式(2 9)进行递归计算:(k+1)=A(k)+BAu(k)(k+2)=A(h)+ABAu(k)+BAu(k+1)s(k+N.)=AN(k)+AN-BAu(k)+.+n(k+1)=CAs(k)+CBAu(k)n(k+2)=CAs(k)+CABAu(k)+CBAu(h+1)n(k+N.)=CANe(k)+CANe-BAu(k)+.+

20、n(k+N。+1)=CA N*g(k)+CA N BA u(h)+.+bk$(k)Au(k)=C(k)(29)(30):CBAu(k+N。-1)CABAu(k+N。-1)n(k+N,)=CAp(k)+CA,-BAu(k)+.+CAN,-Ne-IBAu(k+N,-1)归纳总结得到状态量的输出方程为:n(k+1)n(k+2):Y=n(k+N)n(k+N。+1)n(k+N,)CACA2CAN5(k)+CAN+1。=E+OAU(32)CAMBAu(k+N。-1)CB(k+N。+1)=A N e+I(k)+A N BA u(h)+.+CABABAu(k+N。-1)CAN-BCAN-2 BCANBCANc

21、-B(+N,)=A(k)+AN-BAu(h)+.+:A,-N-BAu(k+N,-1)LCAM,-BCAN,-2B由上式可以看出,根据当前时刻的状态量(k)(31)0CB:和控制时域内的控制增量U即可求得预测时域内00CBCAB:CANp-Ne-BAu(k)Au(k+1)Au(k+N-1)96自动控制2024 年第1期Autocontrol的状态量输出Y,且这种映射关系是线性的,即通过结合动力学模型约束条件及履带车本身机械结定义新的状态量将非线性系统线性化。构、稳定性要求,对模型预测控制的控制量、控制量类似地,定义优化目标函数:增量及状态量进行约束,边界条件见表2。表2模型预测控制仿真约束J(k

22、)=lm(k+i)-mg(h+i)l+i=1N-1Zl/u(h+i)/+po2i=1mins.t.AuminAuAumaxLXminJLXLXmax仿真及实验的理想控制效果为车辆运行轨迹和目标轨迹重合,因此Y=,0,0 。结合式(3 2)和式(3 3),优化函数可以改写为:J(h)=AU(QO+R)AU+2EQOAU+p8?+EQEWminAuminAuAumaxs.t.(34)LXminJLXLXmax将U作为参数,则上述目标函数转变为quadprog二次规划问题,将优化后的结果序列AU中的第一个元素作用于被控对象,在下一时刻重复上述步骤,即可实现模型预测控制。由于二次规划问题已有较为完备高

23、效的求解方法,因此该模型计算速度较快,在实际应用中可以结合PID辅助控制,使车辆尽量在纵向上实现恒速行驶3.4控制器MATLAB仿真验证在MATLAB中对上述两种模型进行仿真验证,待跟踪的轨迹由轨迹规划给出。仿真时,对于同一条参考轨迹,为比较两种方法的控制效果,在同样仿真参数下进行验证,具体数值见表1。非线性模型预测仿真中,目标函数权重设置为:R=Q=1001n;线性模型预测仿真中,目标函数权重设置为:R=Q=100IN,PID控制器参数为:K,=0.5,K,=0.08,Ka=0.01。表1参数控制步长N。预测步长N,采样步长T参数速度角速度QWmax加速度a(33)角加速度。左轮速度i右轮速

24、度2设定履带与待施工路面间的最小安全距离为0.2m,步进距离为6 m,则履带车在终点的位置目标状态为xend,Yend,中ena=6,0,0 ,理想状态下履带车纵向速度恒定为1m。假设车辆初始位姿为WkWmax模型预测控制仿真参数具体数值3300.06下边界-2-0.5-0.2-0.1-2-2o,Yo,。=0,0.5,0 ,取优化函数中曲率及急动度的采样步长均为0.1m,优化函数的权重系数分别为:,=b,=1(t=1,60),c,=10 0,优化算法采用内点法。四次多项式轨迹规划输出结果为:y=-0.0012x*+0.0185x3-0.0833x2+0.5(35)终点处曲率为1.3 10-4,

25、横摆角为1.4 10-2,履带车几何中心纵坐标为2.12 10-12,轨迹最大曲率为0.16,可见该轨迹规划满足轨迹平稳及终点运动状态要求。在上述参考轨迹及约束条件下,在MATLAB中对非线性模型预测控制、线性模型预测控制与PID控制耦合模型分别进行仿真,得到图9 所示结果。从结果图可以看出,在理想条件下,非线性模型预测控制和线性模型预测与PID耦合控制均能对给定轨迹进行较精确的跟踪。为进一步分析两种算法的优劣,对整个仿真过程中的状态量及其偏差进行分析,绘制出运动学参数相对于纵向位置的变化图,如图10 所示。上述两种工况下,线性模型预测的线速度曲线起初对轨迹速度的跟踪效果较差,但随着仿真的进单

26、位行,其线速度偏差逐渐回落,最后趋于平稳,其后半程偏差均稳定在0.0 1m/s内,这是由于在控制算法中加人了PID横向速度跟踪控制器,其对线速度和S角速度的跟踪性能远强于非线性模型预测控制器。97上边界20.50.20.122单位m/srad/sm/s2rad/s2m/sm/s现代极械Modern MachineryXiandai Jixie0.50.40.330.20.1oF-0.101234x/m56 7(a)轨迹图1.021.061.0151.05履带速度1.0121.005F=0.995F0.99F0.985号:0.98(b)非线性模型预测履带速度图9 模型预测结果图0.010.005

27、00-0.01-0.020.033-0.04-0.05-0.0601(a)线速度偏差0.035线性模型预测与PID耦合算法非线性模型预测算法0.030.025三0.020.0150.010.0050-0.005L012x/m(c)纵向位置偏差图10 模型预测结果分析图值得注意的是,线性模型预测控制器的纵向位置偏差均较高,但总体跟踪效果仍良好,这说明该控制算法对横向位置的跟踪有延迟性,但随着时间的推移,控制算法能较快弥补,且接近终点处该算法的各项参数均更加稳定,说明该算法在终点处控制效果更目标轨迹线性模型预测与PID耦合算法.非线性模型预测算法1.041.0331.021.011124560.9

28、90123456x/mx/m(c)线性模型预测PID耦合履带速度-0.015-0.015-0.02-非线性模型预测算法一线性模型预测与PID耦合算法245608x106420-2-4-6L456好。两种算法的横向位置偏差均远小于0.2 m,说明轨迹跟踪满足碰撞极限约束。4结论本文针对道面摊铺后处理智能车,设计了一种基于MPC的步进行驶控制器,相较于人工步进行驶,该控制器基于履带车动力学模型、四次多项式轨迹规划及MPC控制算法实现了自动的步进行驶,提侧履带速度高了行驶的安全性及终点的平稳性。在MATLAB中对上述控制器进行仿真验证,结果表明,本文设计的控制器满足功能要求,对提升道面后处理施工效率

29、具有重要意义。参考文献1刘茂.埃塞首都BOLE国际机场停机坪滑模摊铺混凝土配合比设计 J.工程技术研究,2 0 2 2,7(1:8 4-8 7.2YU J,VANTSEVICH V.Control Applications of vehicledynamics M.CRC Press,2021:251-268.3 张洋虹,倪涛,赵亚辉,等.基于最优控制策略的复杂环境移动机器人轨迹规划J.农业机械学报,2 0 2 2,-0.025非线性模型预测算法线性模型预测与PID耦合算法0.0312454LI D,WU S,ZHAO Y,et al.A hierarchical path trackingx

30、/Im(b)角速度偏差线性模型预测与PID耦合算法非线性模型预测算法01(d)横向位置偏差53(7):414-421.method for high-speed unmanned tracked vehicle C/2021 IEEE International Intelligent Transportation Sys-tems Conference(ITSC).Indianapolis:IEEE,2021:38-43.56作者简介:宋秋杰(19 9 8-),男,湖北随州人,硕士研究生,研究方向为:车辆工程。通讯作者:熊树生(19 7 1-),男,福建周宁县人,工学博士,研究员,博士生导师,研究方向为:机器换人及物联网相关研发、清洁能源与新能源车船优化设计及控制、新能源汽车热管理系统、生物质的资源化利用。收稿日期:2 0 2 3-0 4-0 598

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服