1、(完整word)电磁感应中的动力学和能量问题(教师版)专题 电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1电磁感应与动力学、运动学结合的动态分析,分析方法是:导体受力运动产生感应电动势感应电流通电导线受安培力合外力变化加速度变化速度变化感应电动势变化周而复始地循环,直至达到稳定状态2分析动力学问题的步骤(1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向(2)应用闭合电路欧姆定律求出电路中感应电流的大小(3)分析研究导体受力情况,特别要注意安培力方向的确定(4)列出动力学方程或平衡方程求解3两种状态处理(1)导体处于平衡态-静止或匀速直线运动状态处理方法:根据平衡条件合
2、外力等于零,列式分析(2)导体处于非平衡态-加速度不为零处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析二、电磁感应中的能量问题1电磁感应过程的实质是不同形式的能量转化的过程电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力克服安培力做功此过程中,其他形式的能转化为电能,“外力克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能可以简化为下列形式:同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能2电能求解的思路主要有三种(1)利用克服安培力做功求
3、解:电磁感应中产生的电能等于克服安培力所做的功;(2)利用能量守恒求解:机械能的减少量等于产生的电能;(3)利用电路特征求解:通过电路中所产生的电能来计算例1如图所示,MN、PQ为足够长的平行金属导轨,间距L0。50 m,导轨平面与水平面间夹角37,N、Q间连接一个电阻R5。0 ,匀强磁场垂直于导轨平面向上,磁感应强度B1。0 T将一根质量为m0。050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好已知金属棒与导轨间的动摩擦因数0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距
4、离s2.0 m已知g10 m/s2,sin 370.60,cos 370。80。求:(1)金属棒沿导轨开始下滑时的加速度大小;(2)金属棒到达cd处的速度大小;(3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量解析(1)设金属棒开始下滑时的加速度大小为a,则mgsin mgcos ma a2.0 m/s2(2)设金属棒到达cd位置时速度大小为v、电流为I,金属棒受力平衡,有mgsin BILmgcos I 解得v2.0 m/s(3)设金属棒从ab运动到cd的过程中,电阻R上产生的热量为Q,由能量守恒,有mgssin mv2mgscos Q 解得Q0。10 J突破训练1如图所示,相距为L
5、的两条足够长的平行金属导轨,与水平面的夹角为,导轨上固定有质量为m、电阻为R的两根相同的导体棒,导体棒MN上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B。将两根导体棒同时释放后,观察到导体棒MN下滑而EF保持静止,当MN下滑速度最大时,EF与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是()A导体棒MN的最大速度为B导体棒EF与轨道之间的最大静摩擦力为mgsin C导体棒MN受到的最大安培力为mgsin D导体棒MN所受重力的最大功率为答案AC解析由题意可知,导体棒MN切割磁感线,产生的感应电动势为EBLv,回路中的电流I,MN受到的安培力FBIL,故M
6、N沿斜面做加速度减小的加速运动,当MN受到的安培力大小等于其重力沿轨道方向的分力时,速度达到最大值,此后MN做匀速运动故导体棒MN受到的最大安培力为mgsin ,导体棒MN的最大速度为,选项A、C正确由于当MN下滑速度最大时,EF与轨道间的摩擦力刚好达到最大静摩擦力,由力的平衡知识可知EF与轨道之间的最大静摩擦力为2mgsin ,B错误由PGvsin 可知导体棒MN所受重力的最大功率为,D错误例2如图所示,在倾角37的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d0.55 m,有一边长L0。4 m、质量m10。6 kg、电阻R2 的正方形均匀导体线框
7、abcd通过一轻质细线跨过光滑的定滑轮与一质量为m20。4 kg的物体相连,物体与水平面间的动摩擦因数0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长(取g10 m/s2,sin 370.6,cos 370.8)求:(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大?(3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少?审题指导1。线框abcd未进入磁场时,线框沿斜面向下加速,m2沿水平面向左加速,属连接体
8、问题2ab边刚进入磁场时做匀速直线运动,可利用平衡条件求速度3线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热解析(1)m1、m2运动过程中,以整体法有m1gsin m2g(m1m2)aa2 m/s2以m2为研究对象有FTm2gm2a(或以m1为研究对象有m1gsin FTm1a)FT2.4 N(2)线框进入磁场恰好做匀速直线运动,以整体法有m1gsin m2g0 v1 m/sab到MN前线框做匀加速运动,有v22ax x0。25 m(3)线框从开始运动到cd边恰离开磁场边界PQ时:m1gsin (xdL)m2g(xdL)(m1m2)vQ解得:Q0。4 J所
9、以QabQ0.1 J突破训练2如图所示,平行金属导轨与水平面间的倾角为,导轨电阻不计,与阻值为R的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B.有一质量为m、长为l的导体棒从ab位置获得平行于斜面、大小为v的初速度向上运动,最远到达ab位置,滑行的距离为s,导体棒的电阻也为R,与导轨之间的动摩擦因数为。则()A上滑过程中导体棒受到的最大安培力为B上滑过程中电流做功发出的热量为mv2mgs(sin cos )C上滑过程中导体棒克服安培力做的功为mv2D上滑过程中导体棒损失的机械能为mv2mgssin 答案BD解析导体棒刚开始运动时所受安培力最大,FmBIl,A选项错误由能量守恒定律可知
10、:导体棒动能减少的数值应该等于导体棒重力势能的增加量以及克服安培力做功产生的电热和克服摩擦阻力做功产生的内能,其公式表示为:mv2mgssin mgscos Q电热,则有:Q电热mv2(mgssin mgscos ),即为导体棒克服安培力做的功导体棒损失的机械能即为克服安培力做功和克服摩擦阻力做功的和,W损失mv2mgssin 。故B、D正确例3如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成角,导轨与定值电阻R1和R2相连,且R1R2R,R1支路串联开关S,原来S闭合匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触
11、良好现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状态时速率为v,此时整个电路消耗的电功率为重力功率的。已知重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab中的电流强度I;(2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少?(3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导体棒ab横截面的电荷量为q,求这段距离是多少?解析(1)回路中的总电阻为:R总R当导体棒ab以速度v匀速下滑时棒中的感应电动势为:EBLv此时棒中的感应电流为:I此时回路的总电功率为:P电
12、I2R总此时重力的功率为:P重mgvsin 根据题给条件有:P电P重,解得:I B (2)设导体棒ab与导轨间的滑动摩擦力大小为Ff,根据能量守恒定律可知:mgvsin Ffv 解得:Ffmgsin 导体棒ab减少的重力势能等于增加的动能、回路中产生的焦耳热以及克服摩擦力做功的和mgsin xmv2QFfx解得:Qmgsin xmv2(3)S断开后,回路中的总电阻为:R总2R设这一过程经历的时间为t,这一过程回路中的平均感应电动势为,通过导体棒ab的平均感应电流为,导体棒ab下滑的距离为s,则:,得:qt 解得:s 巩固练习1(2013安徽16)如图所示,足够长的平行金属导轨倾斜放置,倾角为3
13、7,宽度为0。5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 .一导体棒MN垂直导轨放置,质量为0。2 kg,接入电路的电阻为1 ,两端与导轨接触良好,与导轨间的动摩擦因数为0。5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0。8 T将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 370.6)()A2。5 m/s1 W B5 m/s1 WC7。5 m/s9 W D15 m/s9 W解析导体棒MN匀速下滑时受力如图所示,由平衡条件可得F安mgcos 37mgsin 37,所以F安mg(
14、sin 37cos 37)0。4 N,由F安BIL得I1 A,所以EI(R灯RMN)2 V,导体棒的运动速度v5 m/s,小灯泡消耗的电功率为P灯I2R灯1 W正确选项为B.2如图甲所示,电阻不计且间距L1 m的光滑平行金属导轨竖直放置,上端接一阻值R2 的电阻,虚线OO下方有垂直于导轨平面向里的匀强磁场,现将质量m0。1 kg、电阻不计的金属杆ab从OO上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平已知杆ab进入磁场时的速度v01 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则()A匀强磁场的磁感应强度为1 TB杆ab下落
15、0。3 m时金属杆的速度为1 m/sC杆ab下落0.3 m的过程中R上产生的热量为0。2 JD杆ab下落0.3 m的过程中通过R的电荷量为0.25 C解析在杆ab刚进入磁场时,有mgma,由题图乙知,a的大小为10 m/s2,解得B2 T,A错误杆ab下落0.3 m时杆做匀速运动,则有mg,解得v0。5 m/s,选项B错误在杆ab下落0.3 m的过程,根据能量守恒,R上产生的热量为Qmghmv20。287 5 J,选项C错误通过R的电荷量q0。25 C选项D正确3在如图所示倾角为的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域的磁场方向垂直斜面向上,区域的磁场方向垂直斜面向下,磁场
16、的宽度均为L。一质量为m、电阻为R、边长为的正方形导体线圈,在沿平行斜面向下的拉力F作用下由静止开始沿斜面下滑,当ab边刚越过GH进入磁场时,恰好做匀速直线运动,下列说法中正确的有(重力加速度为g)() A从线圈的ab边刚进入磁场到线圈dc边刚要离开磁场的过程中,线圈ab边中产生的感应电流先沿ba方向再沿ab方向B线圈进入磁场过程和离开磁场过程所受安培力方向都平行斜面向上C线圈ab边刚进入磁场 时的速度大小为D线圈进入磁场做匀速运动的过程中,拉力F所做的功等于线圈克服安培力所做的功答案BC解析由右手定则可知线圈的ab边刚进入磁场和线圈的dc边刚要离开磁场时,线圈ab边中的感应电流方向均为ba,
17、线圈经过JP时感应电流的方向为ab,A错误由楞次定律可判断出感应电流所受磁场的安培力阻碍线圈的切割磁感线运动,B正确线圈ab边刚进入磁场时,受到的安培力F安BI,由共点力的平衡知识可知F安mgsin F,联立可得线圈ab边刚进入磁场时的速度大小为,C正确线圈进入磁场做匀速运动的过程中,合外力做的功为0,即拉力F和重力沿斜面方向的分力所做的功等于线圈克服安培力所做的功,D错误课后练习题组1电磁感应中的动力学问题1。如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一定值电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动杆ef及线框中导线的
18、电阻都可不计开始时,给ef一个向右的初速度,则()Aef将减速向右运动,但不是匀减速Bef将匀减速向右运动,最后停止Cef将匀速向右运动Def将做往返运动答案A解析杆ef向右运动,所受安培力FBIlBl,方向向左,故杆ef做减速运动;v减小,F减小,杆做加速度逐渐减小的减速运动,A正确2.一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则()A若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D若线圈进入磁场过程是减速运动,
19、则离开磁场过程是加速运动答案C解析从线框全部进入磁场至线框开始离开磁场,线框做加速度为g的匀加速运动,可知线圈离开磁场过程中受的安培力大于进入磁场时受的安培力,故只有C项正确3在伦敦奥运会上,100 m赛跑跑道两侧设有跟踪仪,其原理如图甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L0.5 m,一端通过导线与阻值为R0。5 的电阻连接导轨上放一质量为m0.5 kg的金属杆,金属杆与导轨的电阻忽略不计匀强磁场方向竖直向下用与导轨平行的拉力F作用在金属杆上,使杆运动当改变拉力的大小时,相对应的速度v也会变化,从而使跟踪仪始终与运动员保持一致已知v和F的关系如图乙(取重力加速度g10 m/
20、s2)则()A金属杆受到的拉力与速度成正比B该磁场的磁感应强度为1 TC图线在横轴的截距表示金属杆与导轨间的阻力大小D导轨与金属杆之间的动摩擦因数0.4答案BCD解析由题图乙可知拉力与速度是一次函数,但不成正比,故A错;图线在横轴的截距是速度为零时的拉力,金属杆将要运动,此时阻力-最大静摩擦力等于该拉力,也等于运动时的滑动摩擦力,C对;由FBILmg0及I可得:Fmg0,从题图乙上分别读出两组F、v数据代入上式即可求得B1 T,0。4,所以选项B、D对4。如图所示,光滑斜面的倾角为,斜面上放置一矩形导体线框abcd,ab边的边长为l1,bc边的边长为l2,线框的质量为m,电阻为R,线框通过绝缘
21、细线绕过光滑的定滑轮与一重物相连,重物质量为M。斜面上ef线(ef平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab边始终平行于底边,则下列说法正确的是()A线框进入磁场前运动的加速度为B线框进入磁场时匀速运动的速度为C线框做匀速运动的总时间为D该匀速运动过程产生的焦耳热为(Mgmgsin )l2答案D解析由牛顿第二定律,Mgmgsin (Mm)a,解得线框进入磁场前运动的加速度为,A错误由平衡条件,Mgmgsin F安0,F安BIl1,I,EBl1v,联立解得线框进入磁场时匀速运动的速度为v,B错误线框做匀速运
22、动的总时间为t,C错误由能量守恒定律,该匀速运动过程产生的焦耳热等于系统重力势能的减小,为(Mgmgsin )l2,D正确题组2电磁感应中的能量问题5一质量为m、电阻为r的金属杆ab,以初速度v0从一对光滑的平行金属导轨底端向上滑行,导轨平面与水平面成30角,两导轨上端用一电阻R相连,如图所示,磁场垂直斜面向上,导轨的电阻不计,金属杆向上滑行到某一高度之后又返回到底端时的速度大小为v,则() A向上滑行的时间小于向下滑行的时间B向上滑行的过程中电阻R上产生的热量大于向下滑行的过程中电阻R上产生的热量C向上滑行的过程中与向下滑行的过程中通过电阻R的电荷量相等D金属杆从开始上滑至返回出发点的过程中
23、,电阻R上产生的热量为m(vv2)答案ABC解析金属杆沿斜面向上运动时安培力沿斜面向下,沿斜面向下运动时安培力沿斜面向上,所以上滑过程的加速度大于下滑过程的加速度,因此向上滑行的时间小于向下滑行的时间,A对;向上滑行过程的平均速度大,感应电流大,安培力做的功多,R上产生的热量多,B对;由q知C对;由能量守恒定律知回路中产生的总热量为m(vv2),D错6.在如图所示的倾角为的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域的磁场方向垂直斜面向上,区域的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场
24、区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab边越过GH到到达MN与JP的中间位置的过程中,线框的动能变化量为Ek,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有() 图6A在下滑过程中,由于重力做正功,所以有v2v1B从ab边越过GH到到达MN与JP的中间位置的过程中,线框的机械能守恒C从ab边越过GH到到达MN与JP的中间位置的过程中,有W1Ek的机械能转化为电能D从ab边越过GH到到达MN与JP的中间位置的过程中,线框动能的变化量大小EkW1W2答案CD解析ab边越过JP后回路感应电动势增大,
25、感应电流增大,因此所受安培力增大,安培力阻碍线框下滑,因此ab边越过JP后开始做减速运动,使感应电动势和感应电流均减小,安培力减小,当安培力减小到与重力沿斜面向下的分力mgsin 相等时,以速度v2做匀速运动,因此v2v1,A错;由于有安培力做功,线框机械能不守恒,B错;线框克服安培力做功,将机械能转化为电能,克服安培力做了多少功,就有多少机械能转化为电能,由动能定理得W1W2Ek,W2W1Ek,故C、D正确7如图所示,足够长的粗糙绝缘斜面与水平面成37角,在斜面上虚线aa和bb与斜面底边平行,在aa、bb围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B1 T;现有一质量为m10 g、总
26、电阻为R1 、边长为d0.1 m的正方形金属线圈MNPQ,让PQ边与斜面底边平行,从斜面上端静止释放,线圈刚好匀速穿过磁场已知线圈与斜面间的动摩擦因数为0。5,(取g10 m/s2,sin 370。6,cos 370.8)求:(1)线圈进入磁场区域时,受到的安培力大小;(2)线圈释放时,PQ边到bb的距离;(3)整个线圈穿过磁场的过程中,线圈上产生的焦耳热答案(1)2102 N(2)1 m(3)4103 J解析(1)对线圈受力分析有:F安mgcos mgsin 代入数据得:F安2102 N(2)F安Bid EBvd I 解得:F安 代入数据得:v2 m/s线圈进入磁场前做匀加速运动,agsin
27、 gcos 2 m/s2线圈释放时,PQ边到bb的距离x1 m(3)由于线圈刚好匀速穿过磁场,则磁场宽度等于d0。1 mQW安F安2d 解得:Q4103 J8如图所示,电阻可忽略的光滑平行金属导轨长s1。15 m,两导轨间距L0。75 m,导轨倾角为30,导轨上端ab接一阻值为R1。5 的电阻,磁感应强度为B0.8 T的匀强磁场垂直轨道平面向上阻值r0.5 、质量m0。2 kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Qr0。1 J(取g10 m/s2)求:(1)金属棒在此过程中克服安培力做的功W安;(2)金属棒下滑速度v2 m/s时的加速
28、度a;(3)为求金属棒下滑的最大速度vm,有同学解答如下:由动能定理,WGW安mv,.由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答答案(1)0.4 J(2)3。2 m/s2(3)见解析解析(1)下滑过程中安培力做的功即为电阻上产生的焦耳热,由于R3r,因此QR3Qr0.3 J所以W安QQRQr0。4 J(2)金属棒下滑时受重力和安培力F安BILv由牛顿第二定律得mgsin 30vma所以agsin 30v10 m/s23.2 m/s2(3)此解法正确金属棒下滑时受重力和安培力作用,其运动满足mgsin 30vma上式表明,加速度随速度增大而减小,棒做加速度减小的加速运动无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大由动能定理可以得到棒的最大速度,因此上述解法正确mgssin 30Qmv所以vm m/s2.74 m/s.8
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100