ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:315.04KB ,
资源ID:2557093      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2557093.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(数据、模型与决策(运筹学)课后习题和案例答案017s.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据、模型与决策(运筹学)课后习题和案例答案017s.doc

1、数据、模型与决策(运筹学)课后习题和案例答案017s ———————————————————————————————— 作者: ———————————————————————————————— 日期: 2 个人收集整理 勿做商业用途 C

2、D SUPPLEMENT TO CHAPTER 17 MORE ABOUT THE SIMPLEX METHOD Review Questions 17s。1-1 No. 17s.1—2 The adjacent corner points that are better than the current corner point are candidates to be the next one. 17s。1-3 The best adjacent corner point criteria and best rate of improvement criteria. 17s.1

3、4 The simplex method starts by selecting some corner point as the initial corner point. 17s。1-5 If none of the adjacent corner points are better (as measured by the value of the objective function) than the current corner point, then the current corner point is an optimal solution。 17s。1-6 Choose

4、 the best adjacent corner point. 17s.1-7 Choose the next corner point by picking the adjacent corner point has the lowest objective function value rather than highest when getting started. There may only be one adjacent corner point if the feasible region is unbounded。 17s。2-1 It is analagous to s

5、tanding in the middle of a room and looking toward one corner where two walls and the floor meet. 17s。2—2 There are three (at most) adjacent corner points. 17s。2-3 Yes。 17s。2-4 With three decision variables, the constraint boundaries are planes. 17s.2-5 A system of n variables and n equations mu

6、st be solved。 17s.3-1 The name derives from the fact that the slack variable for a ≤ constraint represents the slack (gap) between the two sides of the inequality。 17s。3—2 A nonnegative slack variable implies that the left-hand side is not larger than the right—hand side。 17s。3—3 For the Wyndor p

7、roblem, the slack variables represent unused production times in the various plants. 17s.3—4 It is much simpler for an algebraic procedure to deal with equations than with inequalities. 17s。3-5 A nonbasic variable has a value of zero。 17s.3-6 A basic feasible solution is simply a corner point t

8、hat has been augmented by including the values of the slack variables。 17s。3—7 A surplus variable gives the amount by which the left—hand side of a ≥ constraint exceeds the right—hand side。 17s.4-1 (1) Determine the entering basic variable; (2) determine the leaving basic variable; (3) Solve for t

9、he new basic feasible solution 17s。4—2 The entering basic variable is the current nonbasic variable that should become a basic variable for the next basic feasible solution. Among the nonbasic variables with a negative coefficient in equation 0, choose the one whose coefficient has the largest abso

10、lute value to be the entering basic variable。 17s。4—3 The leaving basic variable is the current basic variable that should become a nonbasic variable for the next basic feasible solution. For each equation that has a strictly positive coefficient (neither zero nor negative) for the entering basic v

11、ariable, take the ratio of the right—hand side to this coefficient. Identify the equation that has the minimum ratio, and select the basic variable in this equation to be the leaving basic variable. 17s.4—4 The initialization step sets up to start the iterations and finds the initial basic feasible

12、 solution. 17s.4—5 Examine the current equation 0。 If none of the nonbasic variables have a negative coefficient, then the current basic feasible solution is optimal。 17s。4-6 (1) Equation 0 does not contain any basic variables; (2) each of the other equations contains exactly one basic variable; (

13、3) an equation’s one basic variable has a coefficient of 1; (4) an equation’s one basic variable does not appear inn any other equation。 17s。4-7 The tabular form performs exactly the same steps as the algebraic form, but records the information more compactly。 Problems 17s.1 Getting Started:

14、 Select (0, 0) as the initial corner point. Checking for Optimality: Both (0, 3) and (3, 0) have better objective function values (Z = 6 and 9, respectively), so (0, 0) is not optimal。 Moving On: (3, 0) is the best adjacent corner point, so move to (3, 0). Checking for Optimality: (2, 2) has a be

15、tter objective function value (Z = 10), so (3, 0) is not optimal。 Moving On: Move from (3, 0) to (2, 2). Checking for Optimality: (0, 3) has lower objective function values (Z = 6), so (2, 2) is optimal.个人收集整理,勿做商业用途文档为个人收集整理,来源于网络 17s。2 Getting Started: Select (0, 0) as the initial corner

16、 point. Checking for Optimality: Both (0, 2。667) and (4, 0) have better objective function values (Z = 5.333 and 4, respectively), so (0, 0) is not optimal。 Moving On: (0, 2。667) is the best adjacent corner point, so move to (0, 2。667). Checking for Optimality: (2, 2) has a better objective funct

17、ion value (Z = 6), so (0, 2。667) is not optimal. Moving On: Move from (0, 2。667) to (2, 2). Checking for Optimality: (4, 0) has a lower objective function values (Z = 4), so (2, 2) is optimal.文档为个人收集整理,来源于网络个人收集整理,勿做商业用途 17s。3 Getting Started: Select (0, 0) as the initial corner point。 C

18、hecking for Optimality: Both (0, 5) and (4, 0) have better objective function values (Z = 10 and 12, respectively), so (0, 0) is not optimal. Moving On: (4, 0) is the best adjacent corner point, so move to (4, 0). Checking for Optimality: (4, 2) has a better objective function value (Z = 16), so (

19、4, 0) is not optimal. Moving On: Move from (4, 0) to (4, 2). Checking for Optimality: (3, 4) has a better objective function value (Z = 17), so (4, 2) is not optimal。 Moving On: Move from (4, 2) to (3, 4)。 Checking for Optimality: (0, 5) has a lower objective function values (Z = 10), so (3, 4)

20、is optimal。本文为互联网收集,请勿用作商业用途文档为个人收集整理,来源于网络 17s。4 a) Getting Started: Select (0, 0) as the initial corner point. Checking for Optimality: Both (2, 0) and (0, 5) have better objective function values (Z = 4 and 5, respectively), so (0, 0) is not optimal。 Moving On: (0, 5) is the best adjacen

21、t corner point, so move to (0, 5)。 Checking for Optimality: (2, 5) has a better objective function value (Z = 9), so (0, 5) is not optimal。 Moving On: Move from (0, 5) to (2, 5). Checking for Optimality: (2, 0) has a lower objective function values (Z = 4), so (2, 5) is optimal.文档为个人收集整理,来源于网络本文

22、为互联网收集,请勿用作商业用途 b) Getting Started: Select (0, 0) as the initial corner point。 Checking for Optimality: Moving toward either (2, 0) or (0, 5) improves the objective function value, so (0, 0) is not optimal。 Moving On: Moving toward (2, 0) improves the objective function faster than moving toward

23、 (0, 5) (a rate of 2 vs。 a rate of 1), so move to (2, 0). Checking for Optimality: Moving toward (2, 5) improves the objective function value, so (2, 0) is not optimal. Moving On: Move from (2, 0) to (2, 5)。 Checking for Optimality: Moving toward (0, 5) lowers the objective function values, so (

24、2, 5) is optimal。本文为互联网收集,请勿用作商业用途本文为互联网收集,请勿用作商业用途 17s.5 a) b) The eight corner points are (x1, x2, x3) = (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1)。 c) Objective Function: Profit = x1 + 2x2 + 3x3 Optimal Solution: (x1, x2, x3) = (1, 1, 1)

25、 and Profit = 6。 Corner Point (x1, x2, x3) Profit = x1 + 2x2 + 3x3 (0, 0, 0) 0 (0, 0, 1) 3 (0, 1, 0) 2 (0, 1, 1) 5 (1, 0, 0) 1 (1, 0, 1) 4 (1, 1, 0) 3 (1, 1, 1) 6 d) The simplex method would start at (0, 0, 0), move to the best adjacent corner point at (0, 0, 1), then to (0, 1,

26、 1), and finally to the optimal solution at (1, 1, 1). 17s.6 a) b) The ten corner points are (x1, x2, x3) = (0, 0, 0), (2, 0, 0), (2, 2, 0), (1, 3, 0), (0, 3, 0), (0, 0, 2), (2, 0, 2), (2, 2, 2), (1, 3, 2), (0, 3, 2) c) Objective Function: Profit = 2x1 + x2 – x3 Optimal Solution: (x1, x2

27、 x3) = (2, 2, 0) and Profit = 6. Corner Point (x1, x2, x3) Profit = 2x1 + x2 – x3 (0, 0, 0) 0 (2, 0, 0) 4 (2, 2, 0) 6 (1, 3, 0) 5 (0, 3, 0) 3 (0, 0, 2) –2 (2, 0, 2) 2 (2, 2, 2) 4 (1, 3, 2) 3 (0, 3, 2) 1 d) The simplex method would start at (0, 0, 0), move to the best adjac

28、ent corner point at (2, 0, 0), and then to the optimal solution at (2, 2, 0). 17s.7 a) s1 = 10 – x2 s2 = 20 – 2x1 – x2 b) s1 ≥ 0 and s2 ≥ 0. c) x2 + s1 = 10 2x1 + x2 + s2 = 20 d) Values of the slack variables at (x1, x2) = (10, 0) are s1 = 10 and s2 = 0. The equations for the constraint

29、boundary lines on which (10, 0) lies are x2 = 0 2x1 + x2 = 20 The corresponding basic feasible solution is (x1, x2, s1, s2) = (10, 0, 10, 0)。 The basic variables are x1 and s1; the nonbasic variables are x2 and s2. 17s。8 a) 25x1 + 40x2 + 50x3 ≤ 500。 b) s ≥ 0. c) s = 0。 17s.9 a) Objective

30、 Function: Profit = 2x1 + x2 Optimal Solution: (x1, x2) = (4, 3) and Profit = 11 Corner Point (x1, x2) Profit = 2x1 + x2 (0, 0) 0 (5, 0) 10 (4, 3) 11 (0, 5) 5 b) The graphical simplex method would start at (0, 0), move to the best adjacent corner point at (5, 0), and finally move

31、to the optimal solution at (4, 3)。 c) 3x1 + 2x2 + s1 = 15 x1 + 2x2 + s2 = 10 d) Basic Feasible Solution (x1, x2, s1, s2) Basic Variables Nonbasic Variables (0, 0, 15, 10) s1, s2 x1, x2 (5, 0, 0, 5) x1, s2 x2, s1 (4, 3, 0, 0) x1, x2 s1, s2 (0, 5, 5, 0) x2, s1 x1, s2 e) The gr

32、aphical simplex method would start at (0, 0, 15, 10), move to the best adjacent corner point at (5, 0, 0, 5), and finally move to the optimal solution at (4, 3, 0, 0). 17s。10 a) s1 = 2x1 + 3x2 – 21. s2 = 5x1 + 3x2 – 30。 b) s1 ≥ 0 and s2 ≥ 0. c) 2x1 + 3x2 – s1 = 21. 5x1 + 3x2 – s2 = 30。 d) V

33、alues of the surplus variables at (x1, x2) = (3, 5) are s1 = 0 and s2 = 0. The equations for the constraint boundary lines on which (3, 5) lies are 2x1 + 3x2 = 21 5x1 + 3x2 = 30 The corresponding basic feasible solution is (x1, x2, s1, s2) = (3, 5, 0, 0)。 The basic variables are x1 and x2; th

34、e nonbasic variables are s1 and s2。 17s。11 a) 20x1 + 10x2 ≥ 100。 b) s ≥ 0。 c) s = 0. 17s.12 a) Getting Started: Select (16, 0) as the initial corner point. (Cost = 32。) Checking for Optimality: Both (15, 0) and (0, 24) have better objective function values (Cost = 30 and 24, respectively

35、), so (16, 0) is not optimal. Moving On: (0, 24) is the best adjacent corner point, so move to (0, 24)。 (Cost = 24.) Checking for Optimality: (0, 20) has a better objective function value (Cost = 20), so (0, 24) is not optimal. Moving On: Move from (0, 24) to (0, 20)。 (Cost = 20。) Checking for

36、Optimality: (7。5, 7.5) has a higher objective function values (Cost = 22.5), so (0, 20) is optimal。 (Cost = 20)。本文为互联网收集,请勿用作商业用途本文为互联网收集,请勿用作商业用途 b) Getting Started: Select (16, 0) as the initial corner point. (Cost = 32。) Checking for Optimality: Moving toward either (15, 0) or (0, 24) improve

37、the objective function value, so (16, 0) is not optimal. Moving On: Moving toward (15, 0) improves the objective function at a faster rate (2 per unit) than moving toward (0, 24) (rate = 1/3), so move to (15, 0)。 (Cost = 30。) Checking for Optimality: Moving toward (7.5, 7.5) improves the objective

38、 function value, so (15, 0) is not optimal. Moving On: Move from (15, 0) to (7.5, 7.5). Checking for Optimality: Moving toward (0, 20) improves the objective function value, so (7。5, 7。5) is not optimal。 Moving On: Move from (7.5, 7.5) to (0, 20)。 (Cost = 20。) Checking for Optimality: Moving to

39、ward (0, 24) increases the objective function value, so (0, 20) is optimal. (Cost = 20。)个人收集整理,勿做商业用途本文为互联网收集,请勿用作商业用途 c) Sequence of basic feasible solutions (x1, x2, s1, s2, s3): (16, 0, 20, 0, 1), (0, 24, 12, 0, 9), (0, 20, 0, 8, 5). 17s.13 a) Getting Started: Select (0, 0) as the initial

40、 corner point。 (Profit = 0.) Checking for Optimality: Both (7, 0) and (0, 2) have better objective function values (Profit = 7 and 6, respectively), so (0, 0) is not optimal。 Moving On: (7, 0) is the best adjacent corner point, so move to (7, 0)。 (Profit = 7。) Checking for Optimality: (7, 2) has

41、a better objective function value (Profit = 13), so (7, 0) is not optimal. Moving On: Move from (7, 0) to (7, 2)。 (Profit = 13.) Checking for Optimality: (0, 2) has a lower objective function value (Profit = 6), so (7, 2) is optimal. (Profit = 13.)文档为个人收集整理,来源于网络个人收集整理,勿做商业用途 b) Getting Started:

42、 Select (0, 0) as the initial corner point。 (Profit = 0.) Checking for Optimality: Moving toward either (7, 0) and (0, 2) improves the objective function value, so (0, 0) is not optimal. Moving On: Moving toward (0, 2) improves the objective function value faster than moving toward (7, 0) (rate =

43、3 toward (0, 2) and 1 toward (7, 0)), so move to (0, 2). (Profit = 6。) Checking for Optimality: Moving toward (7, 2) improves the objective function value, so (0, 2) is not optimal. Moving On: Move from (0, 2) to (7, 2). (Profit = 13.) Checking for Optimality: Moving toward (7, 2) decreases the o

44、bjective function value, so (7, 2) is optimal. (Profit = 13。)本文为互联网收集,请勿用作商业用途个人收集整理,勿做商业用途 c) x1 + s1 = 7 x2 + s2 = 2 d) Geometric Progression Algebraic Progression Iteration Corner Point CBE Nonbasic Variables Basic Variables Basic Feasible Solution (x1, x2, s1, s2) 0 (0, 0)

45、 3, 4 x1, x2 s1, s2 (0, 0, 7, 2) 1 (0, 2) 2, 3 x1, s2 x2, s1 (0, 2, 7, 0) 2 (7, 2) 1, 2 s1, s2 x1, x2 (7, 2, 0, 0) e) Iteration 0: 0) Z –1x1 –3x2 +0s1 +0s2 = 0 1) +1x1 +0x2 +1s1 +0s2 = 7 2) +0x1 +1x2 +0s1 +1s2 = 2 x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0。 Iteration 1: 0) Z

46、–1x1 +0x2 +0s1 +3s2 = 6 1) +1x1 +0x2 +1s1 +0s2 = 7 2) +0x1 +1x2 +0s1 +1s2 = 2 x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0. Iteration 2: 0) Z +0x1 +0x2 +1s1 +3s2 = 13 1) +1x1 +0x2 +1s1 +0s2 = 7 2) +0x1 +1x2 +0s1 +1s2 = 2 x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0. 17s.14 a) Getting Started: Select

47、0, 0) as the initial corner point. (Profit = 0.) Checking for Optimality: Both (2, 0) and (0, 2) have better objective function values (Profit = 2 and 4, respectively), so (0, 0) is not optimal. Moving On: (0, 2) is the best adjacent corner point, so move to (0, 2). (Profit = 4.) Checking for Op

48、timality: (1, 2) has a better objective function value (Profit = 5), so (2, 0) is not optimal. Moving On: Move from (2, 0) to (1, 2)。 (Profit = 5.) Checking for Optimality: (2, 1) has a lower objective function value (Profit = 4), so (1, 2) is optimal. (Profit = 5.)个人收集整理,勿做商业用途本文为互联网收集,请勿用作商业用途

49、 b) Getting Started: Select (0, 0) as the initial corner point。 (Profit = 0.) Checking for Optimality: Moving toward either (2, 0) and (0, 2) improves the objective function value, so (0, 0) is not optimal. Moving On: Moving toward (0, 2) improves the objective function value faster than moving to

50、ward (2, 0) (rate = 2 toward (0, 2) and 1 toward (2, 0)), so move to (0, 2)。 (Profit = 4。) Checking for Optimality: Moving toward (1, 2) improves the objective function value, so (0, 2) is not optimal。 Moving On: Move from (0, 2) to (1, 2). (Profit = 5。) Checking for Optimality: Moving toward (2,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服