ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:182.54KB ,
资源ID:2554462      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2554462.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(26.1.2反比例函数图像和性质2教案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

26.1.2反比例函数图像和性质2教案.doc

1、(完整版)26.1.2反比例函数图像和性质2教案2612反比例函数的图象和性质(2)【学习目标】1、 能用反比例函数的定义和性质解决相关的数学问题.2、经历探索反比例函数与方程、不等式之间关系的过程,体会它们之间的内在的辩证关系。3、进一步认识数形结合的思想和待定系数法。【学习重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题【学习难点】体会反比例函数与方程、不等式之间关系,认识数形结合的思想方法【学法指导】自主、合作、探究 教 学 互 动 设 计方法导引【自主学习,基础过关】一、复习巩固1、反比例函数的图象经过点A(3,2),则次反比例函数的解析式为 。区别于一次函数,类似

2、正比例函数,反比例函数中只有 个待定系数k,只需 组x,y的对应值即可确定反比例函数的解析式。(为学习例3做准备)2、的图像叫 ,图像位于象限,在每一象限内,当增大时,则;函数y=图象在第 象限,在每个象限内y随x的减少而 二、自主探究老师在黑板上写了这样一道题:“已知(2,5)在反比例函数y=的图像上,试判断点(-5,2)是否也在此图像上。题中的“?”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目。(问题导入)学生独立完成鼓励学生独立完成,教师点拨三、课堂练习,巩固新知1、已知反比例函数的图象经过点A(2,6),(1) 这个函数的图象分布在哪些象限?y随的增大如

3、何变化?(2) 点B(3,4)、C(-2,4)和D(2,5)是否在这个函数的图象上?变式训练1、 若点B(3,3n+5)在此双曲线上, n= 2、 若C为此反比例函数图像上任意一点,CD垂直OX于点D,CE垂直OY于点E,求四边形ODCE的面积。(反过来若C为此反比例函数图像上任意一点,CD垂直OX于点D,CE垂直OY于点E,四边形ODCE的面积是5,求k的值。)练习:若A(-3,)B(-2,)是反比例函数上的两个点,则与的关系为 。若A(-3,)B(-2,)C(4,y3)是反比例函数上的三个点,则、与y3的关系为 。2图中 是反比例函数的图象的一支,根据图象回答下列问题:(1) 图象的另一支

4、在哪个象限?常数m的取值范围是什么?(2) 在这个函数图象的某一支上任取点A(a,b)和点B(a,b).如果aa,那么b和b有怎样的大小关系?变式训练(1)在这个函数图像上任取点M(x,y)和点N(,),且x1x20那么y和有怎样的大小关系?(2)试比较和的大小。讨论:不等式与反比例函数之间的关系是怎样的?四、我的疑惑(学生自主写出自己的疑惑,各小组组长收集,整理和分析这些疑惑,把这些疑惑传递给老师,老师一并把有意义的疑惑呈现给所有同学。) 提示:以上内容为学生独立完成的预习内容.要求:上课前组长(或者科代表)把各个小组成员的疑惑交给老师查看。五、巩固提高,拓展升华1、y= (2)y= (3)

5、y= 在x轴上方的图象如图所示,由此推出k1,k2,k3的大小关系 2、直线y=kx与反比例函数y=的图象相交于点A、B,过点A作AC垂直于y轴于点C,SABC= 3、已知正比例函数y=kx和反比例函数的图像都过点A(m,1),求此正比例函数解析式及另一交点坐标。4如图2所示,一次函数y=kx+b的图象与反比例函数y =的图象交于A、B两点(1)利用图中条件,求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围【学生总结】1、老师学生一起把课堂检测的问题结论,及步骤过程交流讨论清楚2、学生通过当堂检测,找到自己当堂的问题,并用两种颜色的笔做好修改,注

6、释和笔记等3、学生自主查看翻阅资料,复习总结以及相互讨论不理解或者更深层次的数学问题。六、课外训练 1、已知函数的图象经过点(2,3),下列说法正确的是( ) Ay随x的增大而增大 B.函数的图象只在第一象限 C当x0时,必有y0 D。点(2,-3)不在此函数的图象上2、如果两点(1,)和(2,)都在反比例函数的图象上,那么()A0 B0 C0 D03 、反比例函数 在第一象限内的图象如图所示,P为该图象上任意一点,PQ垂直于x轴,垂足为Q,设POQ面积为S,则S的值与k之间的关系是( )【总结提炼,知识升华】1、本节学习的内容:反比例函数图像及性质的运用2、数学思想方法归纳:待定系数法与方程(不等式)思想.数形结合思想【课后训练,巩固拓展】 教材习题26。1 P8 5、8、9及练习册【教学反思】 通过当堂检测,找到学生自己当堂的问题,并用两种颜色的笔做好修改,注释和笔记等 4 / 4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服