ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:153KB ,
资源ID:2554362      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2554362.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(重点强化课函数图象与性质.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

重点强化课函数图象与性质.doc

1、重点强化课(一) 函数的图象与性质 [复习导读] 函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识. 重点1 函数图象的应用  已知f(x)为偶函数,当x≥0时,f(x)=则不等式f(x-1)≤的解集为 (  ) 【导学号:31222064】 A.∪ B.∪ C.∪ D.∪ A [画出函数f(x)的图象,如图, 当0≤x≤时,令f(x)=cos

2、πx≤,解得≤x≤; 当x>时,令f(x)=2x-1≤,解得<x≤, 故有≤x≤. 因为f(x)是偶函数,所以f(x)≤的解集为∪,故f(x-1)≤的解集为∪.]  [迁移探究1] 在本例条件下,若关于x的方程f(x)=k有2个不同的实数解,求实数k的取值范围. [解] 由函数f(x)的图象(图略)可知,当k=0或k>1时,方程f(x)=k有2个不同的实数解,即实数k的取值范围是k=0或k>1.12分 [迁移探究2] 在本例条件下,若函数y=f(x)-k|x|恰有两个零点,求实数k的取值范围. [解] 函数y=f(x)-k|x|恰有两个零点,即函数y=f(x)的图象与y=k|x|

3、的图象恰有两个交点,借助函数图象(图略)可知k≥2或k=0,即实数k的取值范围为k=0或k≥2.12分 [规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性. 2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或范围. 3.有关不等式的问题常常转化为两个函数图象的上、下关系来解. [对点训练1] 已知函数y=f(x)的图象是圆x2+y2=2上的两段弧,如图1所示,则不等式f(x)>f(-x)-2x的解集是________. 图1

4、 (-1,0)∪(1,] [由图象可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x,在同一直角坐标系中分别画出y=f(x)与y=-x的图象,由图象可知不等式的解集为(-1,0)∪(1,].] 重点2 函数性质的综合应用 角度1 单调性与奇偶性结合  (1)(2017·石家庄质检(二))下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  ) A.y=       B.y=lg x C.y=|x|-1 D.y=|x| (2)(2016·天津高考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a

5、的取值范围是(  ) A. B.∪ C. D. (1)C (2)C [(1)函数y=是奇函数,排除A;函数y=lg x既不是奇函数,也不是偶函数,排除B;当x∈(0,+∞)时,函数y=|x|=x单调递减,排除D;函数y=|x|-1是偶函数,且在(0,+∞)上单调递增,故选C. (2)因为f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,所以f(-x)=f(x),且f(x)在(0,+∞)上单调递减.由f(2|a-1|)>f(-),f(-)=f()可得2|a-1|<,即|a-1|<,所以<a<.] 角度2 奇偶性与周期性结合  (2017·贵阳适应性考试(二))若函数f

6、x)=asin 2x+btan x+1,且f(-3)=5,则f(π+3)=________. -3 [令g(x)=asin 2x+btan x,则g(x)是奇函数,且最小正周期是π,由f(-3)=g(-3)+1=5,得g(-3)=4,则g(3)=-g(-3)=-4,则f(π+3)=g(π+3)+1=g(3)+1=-4+1=-3.] 角度3 单调性、奇偶性与周期性结合  已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则(  ) A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<

7、f(-25) D.f(-25)<f(80)<f(11) D [因为f(x)满足f(x-4)=-f(x), 所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3). 由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1). 因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数, 所以f(x)在区间[-2,2]上是增函数, 所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).]  [规律方法] 函数性质综合应用

8、问题的常见类型及解题方法 (1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性. (2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. (3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解. 重点3 函数图象与性质的综合应用  (1)(2017·郑州二检)已知函数f(x)=函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是(  ) A.[-1,1) B.[0,2] C.[-2,2) D.[

9、-1,2) (2)已知函数f(x)=若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(  ) A.(-∞,0] B.[0,1) C.(-∞,1) D.[0,+∞) (1)D (2)C [(1)由题意知g(x)= 因为g(x)有三个不同的零点, 所以2-x=0在x>a时有一个解.由x=2,得a<2. 由x2+3x+2=0,得x=-1或x=-2, 由x≤a,得a≥-1. 综上,a的取值范围为[-1,2). (2)函数f(x)=的图象如图所示, 当a<1时,函数y=f(x)的图象与函数f(x)=x+a的图象有两个交点,即方程f(x)=x+a有且只有两个

10、不相等的实数根.]  [规律方法] 解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能. [对点训练2] (2017·云南二次统一检测)已知f(x)的定义域为实数集R,∀x∈R,f(3+2x)=f(7-2x),若f(x)=0恰有n个不同实数根,且这n个不同实数根之和等于75,则n=________. 15 [由f(3+2x)=f(7-2x)得函数f(x)的图象关于直线x=5对称,则f(x)=0的n个实根的和为5n=75,解得n=15.] 重点强化

11、训练(一) 函数的图象与性质 A组 基础达标 (建议用时:30分钟) 一、选择题 1.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=(  ) 【导学号:31222065】 A.-         B. C.2 D.-2 B [因为函数f(x)是偶函数,所以f(-)=f()=log2=.] 2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=(  ) A.-3 B.-1 C.1 D.3 C [用“-x”代替“x”,得f(-x)-g(-x)=(-x)3+(-x)2+1,化

12、简得f(x)+g(x)=-x3+x2+1,令x=1,得f(1)+g(1)=1,故选C.] 3.函数f(x)=3x+x-2的零点所在的一个区间是(  ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) C [因为函数f(x)在定义域上单调递增, 又f(-2)=3-2-1-2=-<0, f(-1)=3-1--2=-<0, f(0)=30+0-2=-1<0, f(1)=3+-2=>0,所以f(0)f(1)<0, 所以函数f(x)的零点所在区间是(0,1).] 4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a

13、)+f(loga)≤2f(1),则a的取值范围是(  ) 【导学号:31222066】 A.[1,2] B. C. D.(0,2] C [∵f(loga)=f(-log2a)=f(log2a),∴原不等式可化为f(log2a)≤f(1).又∵f(x)在区间[0,+∞)上单调递增,∴0≤log2a≤1,即1≤a≤2.∵f(x)是偶函数,∴f(log2a)≤f(-1).又f(x)在区间(-∞,0]上单调递减,∴-1≤log2a≤0,∴≤a≤1.综上可知≤a≤2.] 5.(2017·陕西质检(二))若f(x)是定义在(-∞,+∞)上的偶函数,∀x1,x2∈[0,+∞)(x1≠x2),

14、有<0,则(  ) A.f(3)<f(1)<f(-2) B.f(1)<f(-2)<f(3) C.f(-2)<f(1)<f(3) D.f(3)<f(-2)<f(1) D [由对任意的x1,x2∈[0,+∞),<0得函数f(x)为[0,+∞)上的减函数,又因为函数f(x)为偶函数,所以f(3)<f(2)=f(-2)<f(1),故选D.] 二、填空题 6.函数y=f(x)在x∈[-2,2]上的图象如图2所示,则当x∈[-2,2]时,f(x)+f(-x)=________. 【导学号:31222067】 图2 0 [由题图可知,函数f(x)为奇函数, 所以f(x)+f(-x)=

15、0.] 7.若函数y=log2(ax2+2x+1)的值域为R,则a的取值范围为________. [0,1] [设f(x)=ax2+2x+1,由题意知,f(x)取遍所有的正实数.当a=0时,f(x)=2x+1符合条件;当a≠0时,则解得0<a≤1, 所以0≤a≤1.] 8.(2017·银川质检)已知y=f(x)是定义在R上的奇函数,在(0,+∞)上是增函数,且f(2)=0,则满足f(x-1)<0的x的取值范围是________. (-∞,-1)∪(1,3) [依题意当x∈(1,+∞)时,f(x-1)<0=f(2)的解集为x<3,即1<x<3;当x∈(-∞,1)时,f(x-1)<0=f

16、-2)的解集为x<-1,即x<-1.综上所述,满足f(x-1)<0的x的取值范围是(-∞,-1)∪(1,3).] 三、解答题 9.已知函数f(x)=2x,当m取何值时方程|f(x)-2|=m有一个解,两个解? [解] 令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图象如图所示.3分 由图象看出,当m=0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解;9分 当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个解.12分 10.函数f(x)=m+logax(a>0且a≠1)的图象过点(8,2)和(1,-1). (1)求

17、函数f(x)的解析式; (2)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值. [解] (1)由得3分 解得m=-1,a=2, 故函数解析式为f(x)=-1+log2x.5分 (2)g(x)=2f(x)-f(x-1) =2(-1+log2x)-[-1+log2(x-1)] =log2-1(x>1).7分 ∵==(x-1)++2≥2+2=4. 9分 当且仅当x-1=,即x=2时,等号成立. 而函数y=log2x在(0,+∞)上单调递增, 则log2-1≥log24-1=1, 故当x=2时,函数g(x)取得最小值1.12分 B组 能力提升

18、 (建议用时:15分钟) 1.(2017·东北三省四市二联)已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则不等式<f(1)的解集为(  ) A. B.(0,e) C. D.(e,+∞) C [f(x)为R上的奇函数,则f=f(-ln x)=-f(ln x),所以==|f(ln x)|,即原不等式可化为|f(ln x)|<f(1),所以-f(1)<f(ln x)<f(1),即f(-1)<f(ln x)<f(1).又由已知可得f(x)在R上单调递增,所以-1<ln x<1,解得<x<e,故选C.]  2.已知函数f(x),g(x)分别是定义在R上的偶函数与奇函数,且

19、g(x)=f(x-1),则f(2 019)的值为________. 【导学号:31222068】 0 [g(-x)=f(-x-1),由f(x),g(x)分别是偶函数与奇函数,得g(x)=-f(x+1),∴f(x-1)=-f(x+1),即f(x+2)=-f(x),∴f(x+4)=f(x),故函数f(x)是以4为周期的周期函数,则 f(2 019)=f(505×4-1)=f(-1)=g(0)=0.] 3.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性并证明你的结论

20、 (3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围. [解] (1)∵对于任意x1,x2∈D, 有f(x1·x2)=f(x1)+f(x2), ∴令x1=x2=1,得f(1)=2f(1), ∴f(1)=0.3分 (2)f(x)为偶函数.4分 证明如下:令x1=x2=-1, 有f(1)=f(-1)+f(-1), ∴f(-1)=f(1)=0. 令x1=-1,x2=x有f(-x)=f(-1)+f(x), ∴f(-x)=f(x), ∴f(x)为偶函数.7分 (3)依题设有f(4×4)=f(4)+f(4)=2, 由(2)知,f(x)是偶函数, ∴f(x-1)<2⇔f(|x-1|)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服