ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:22.54KB ,
资源ID:2546632      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2546632.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(教学设计说明.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

教学设计说明.doc

1、(完整word)教学设计说明教 案 说 明一、授课内容的数学本质与教学目标定位教学内容:本节课是北师大版教材七年级(下)第七章生活中的轴对称第二节“简单的轴对称图形”的第一课时主要内容是经历探索简单图形轴对称性的过程,进一步体验轴对称图形的特征,并由此探索了解角平分线的有关性质,应用角平分线的性质解决一些简单问题教学目标:知识与技能:(1)进一步认识轴对称图形的特点,认识角是轴对称图形; (2)探索并了解角平分线的有关性质;(3)能应用角平分线的性质解决一些简单的问题过程与方法:(1)在探索角平分线性质的过程中,培养学生观察、思考、分析和概括的能力;(2)在动手操作的活动中,通过说理,培养学生

2、运用数学语言进行表述的能力; (3)通过学习进一步理解由“特殊”到“ 一般”的数学思想.情感与态度:(1)通过轴对称图形的教学进行审美教育,让学生充分感受数学美,从而激发学生热爱数学的情感;(2)通过探究活动培养学生团结协作的精神.二、教材的地位及作用本节教材是在学生对轴对称现象有了一定认识,能够识别简单的轴对称图形及其对称轴的基础上,经历探索的过程,掌握角平分线的有关性质,为以后学习其他轴对称图形(矩形、正方形、菱形等)知识奠定必要的基础三、教学诊断分析1.在学习有关角的对称轴是角平分线所在直线的时候,学生常常将角平分线理解成角的对称轴,因此,在本节课的教学过程中作了特别强调;2。运用角平分

3、线的性质解决问题时,学生常常会运用全等将角平分线的性质再证明一次,而没有直接使用角平分线的性质,简化证明过程,因此,在本节课通过例题及巩固练习,加深学生对角平分线性质的运用.四、教学设计说明1根据新课程课堂教学理念“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验” 本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和生生、师生互动交流,从而使学生能很好地掌握角平分线的性质,并获得用折纸这样的操作

4、发现法探究图形性质的活动经验2在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况(学生比较优秀),因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练中学会运用角平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展的数学课程基本理念3本节课在教法上选用了“探究发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操作探究因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:动手活动:通过动手度量、折纸等活动,探

5、索角平分线的性质;表述活动:用文字语言、图形语言、符号语言表述角平分线的性质,并互动说理证明;应用活动:角平分线的性质的认识及应用;拓展活动:结合本节课的知识,对线段的轴对称性进行探索4教材中只给出了角平分线的性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理,因此在这里,我引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的说理过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础. 5评价方式根据课标的评价理念,教

6、学中我关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能应用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励。指导老师点评任何数学老师都想上一堂优秀的数学课,优秀的数学老师想自己上的每一堂课都是优秀的,我们都想成为智慧型的数学老师。我们高兴的看到,郭老师给了我们很好的示范。一、学生的发现数学家乔治伯利亚:“学任何知识的最佳途径是自己去发现,因为这种发现理解最省,也最容易了解其中的规律,性质和联系”。这里的发现就是在教师设定的在原有的知识的基础上产生新的问题,由学生去发现、去再创造.郭老师从学生最熟悉的工具(两个全等的30的三角板)设置的拼图活动出

7、发,从学生拼出的图形中我们可以看到很好地呈现了探索问题的情景,又为后边的学习新的轴对称和中心对称,做好了铺垫,起到了很好地承上启下作用,学生遵循着老师设置的问题,通过测量、折纸等活动去发现去探索,随着七个问题的提出与解决,知识在学生脑海中已基本形成,郭老师的情景和问题串的设置真是匠心独运。二、知识的产生发现结论是定理的初级阶段,如何让定理在学生头脑中形成可迁移的印记呢?郭老师通过“最大限度地给予学生表演的机会”、“指导学生阅读教材引,引导学生用普通数学语言、几何语言、符号语言进行表述和转换,让我们看到了知识的产生其实就是数学语言的产生,三种数学语言的互化形成数学知识内化,在这个环节表现的生生互

8、动,让我们感受到了知识就是在这样的交流,试错中完成的,什么叫水到渠成,由此可见一斑。三、知识的运用知识的掌握、能力的形成其实就是这个定理(基本模式)在较为复杂的图形中的识别与分离(例题1)、组合与补全(例题2),几何定理的运用就是基本图形的识别与补全,例题的选择是为了学生形成能力、能够迁移所必须具备的基本要素,郭老师在这两个例题的设置上让我们看到了一个优秀的数学老师的深厚功底,这里的精彩是看不见的,但思维的链条在学生头脑中已成雏形,我们从反馈练习的顺利完成就可以清楚看到这一点。四、方法的拓展最有价值的知识是方法,形成知识不是我们的最终目的,知识是形成方法的载体,知识的灵魂是方法,学生从前五个环

9、节中学到了知识,形成了初步的方法(从操作中发现,在特殊中探索),但这种方法需要老师有意识地深化、延伸,探索线段轴对称性以及对称轴上一点到两端距离的关系,这个问题的设置看似简单,其实把握捉了本节的精华“从特殊到一般的数学思想方法,使学生从单纯的解题方法的模仿发展到思维过程的模仿,提高了学生的思维质量。数学课从本质上讲是简洁的:设置什么情景,怎样操作检验,讨论什么问题,明确什么结论,形成什么知识和方法。本节从操作中探索,探索中操作,在探索中深化,在操作中明辨,从操作开始到操作中拓展,把握住了核心,使数学的课堂教学真正落实到了学生的发展上-这就是我们每一位数学老师追求的优秀的数学课,也是每一节数学课都是优秀的标准。 成都市七中育才学校 陈英

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服