1、选修2-3 排列与组合练习题16个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A40 B50 C60 D70答案B解析先分组再排列,一组2人一组4人有C15种不同的分法;两组各3人共有10种不同的分法,所以乘车方法数为25250,故选B.2有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A36种 B48种 C72种 D96种答案C解析恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共AA72种排法,故选C.3只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A6个
2、B9个 C18个 D36个答案C解析注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C3(种)选法,即1231,1232,1233,而每种选择有AC6(种)排法,所以共有3618(种)情况,即这样的四位数有18个4男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A2人或3人 B3人或4人C3人 D4人答案A解析设男生有n人,则女生有(8n)人,由题意可得CC30,解得n5或n6,代入验证,可知女生为2人或3人5某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法
3、有()A45种 B36种 C28种 D25种答案C解析因为108的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28种走法6某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A24种 B36种 C38种 D108种答案B解析本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然后再分到两部门去共有CA种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,
4、由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种方法,由分步乘法计数原理共有2CAC36(种)7组合数C(nr1,n,rZ)恒等于()A.C B(n1)(r1)CCnrC D.C答案D解析CC,故选D.8已知集合A5,B1,2,C1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A33 B34 C35 D36答案A解析所得空间直角坐标系中的点的坐标中不含1的有CA12个;所得空间直角坐标系中的点的坐标中含有1个1的有CAA18个;所得空间直角坐标系中的点的坐标中含有2个1的有C3个故共有符合条件的点的个数为1218333个,故选
5、A.9(2010四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A72 B96 C108 D144答案C解析分两类:若1与3相邻,有ACAA72(个),若1与3不相邻有AA36(个)故共有7236108个10(2010北京模拟)如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A50种 B60种 C120种 D210种答案C解析先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6
6、,7),甲任选一种为C,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A种,按照分步乘法计数原理可知共有不同的安排方法CA120种,故选C.二、填空题11安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_种(用数字作答)答案2400解析先安排甲、乙两人在后5天值班,有A20(种)排法,其余5人再进行排列,有A120(种)排法,所以共有201202400(种)安排方法12今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有_种不同的排法(用数字作答)答案1260解析由题意可知,因同色球不加以
7、区分,实际上是一个组合问题,共有CCC1260(种)排法13(2010江西理,14)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_种(用数字作答)答案1080解析先将6名志愿者分为4组,共有种分法,再将4组人员分到4个不同场馆去,共有A种分法,故所有分配方案有:A1 080种14(2010山东济宁)要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有_种不同的种法(用数字作答)答案72解析5有4种种法,1有3种种法,4有2种种法若1、3同色,2有2种种法,若1、3不同色,2有1种种法,有432(1211)72种三
8、、解答题15(1)计算CC;(2)求20C4(n4)C15A中n的值解析(1)CCCC20049502005150.(2)204(n4)15(n3)(n2),即15(n3)(n2),所以(n5)(n4)(n1)(n4)(n1)n90,即5(n4)(n1)90.所以n25n140,即n2或n7.注意到n1且nZ,所以n2.点拨在(1)中应用组合数性质使问题简化,若直接应用公式计算,容易发生运算错误,因此,当m时,特别是m接近于n时,利用组合数性质1能简化运算16(2010东北师大附中模拟)有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时
9、点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?解析因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C种亮灯办法然后分步确定每个二极管发光颜色有2228(种)方法,所以这排二极管能表示的信息种数共有C222160(种)17按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间解析(1)CCC13 860(种);(2)5 775(种);(3)分两步:第一步平均分三组;第二步让三个
10、小组分别进入三个不同车间,故有ACCC34 650(种)不同的分法186男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?解析(1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有AA种不同排法(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A种排法,若甲不在末位,则甲有A种排法,乙有A种排法,其余有A种排法,综上共有(AAAA)种排法方法二:无条件排列总数A甲不在首乙不在末,共有(A2AA)种排法(3)10人的所有排列方法有A种,其中甲、乙、丙的排序有A种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有种(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有A种排法
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100