ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:803.54KB ,
资源ID:2540907      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2540907.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(山东省校级联考2023届高一数学第一学期期末综合测试模拟试题含解析.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山东省校级联考2023届高一数学第一学期期末综合测试模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试

2、卷和答题卡一并交回。一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1函数的图像恒过定点,则的坐标是( )A.B.C.D.2已知函数的图象经过点,则的值为( )A.B.C.D.3已知唯一的零点在区间、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点4设集合M=,N=,则MN等于A.0B.0,5C.0,1,5D.0,1,55如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A.B.C.D.6

3、幂函数的图象不过原点,则()A.B.C.或D.7下列命题中是真命题的是( )A.“”是“”的充分条件B.“”是“”的必要条件C.“”是“”的充要条件D.“”是“”的充要条件8函数在区间上的最大值为2,则实数的值为A.1或B.C.D.1或9利用二分法求方程的近似解,可以取得一个区间A.B.C.D.10设则的大小关系是A.B.C.D.11已知函数,若,则( )A.B.C.D.12()A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是_.14已知(其中且为常数)有两个零点,则实数的取值范围是_.15在正方

4、形ABCD中,E是线段CD的中点,若,则_.16给出下列说法:和直线都相交的两条直线在同一个平面内;三条两两相交的直线一定在同一个平面内;有三个不同公共点的两个平面重合;两两相交且不过同一点的四条直线共面其中正确说法的序号是_三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.18已知函数的最小正周期为.(1)求的值和的单调递增区间;(2)令函数,求在区间上的值域.19如图,已知AA1平面ABC,BB1AA1,ABAC3,

5、BC2,AA1,BB12,点E和F分别为BC和A1C的中点(1)求证:EF平面A1B1BA;(2)求直线A1B1与平面BCB1所成角的大小20(1)计算(2)已知角的终边过点,求角的三个三角函数值21已知.(1)若,且,求的值.(2)若,求的值.22已知集合,或,.(1)求,;(2)求.参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】利用指数函数的性质即可得出结果.【详解】由指数函数恒过定点,所以函数的图像恒过定点.故选:D2、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因

6、为函数的图象经过点,所以,则.故选:C.3、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定注意到命题说法的等价说法在判断中的作用4、C【解析】,选C.5、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【

7、详解】由图可知,则该扇形的半径,故面积.故选:D6、B【解析】根据幂函数的性质求参数.【详解】是幂函数,解得或或幂函数的图象不过原点,即故选:B7、B【解析】利用充分条件、必要条件的定义逐一判断即可.【详解】因为是集合A的子集,故“”是“”的必要条件,故选项A为假命题;当时,则,所以“”是“”的必要条件,故选项B为真命题;因为是上的减函数,所以当时,故选项C为假命题;取,但,故选项D为假命题.故选:B.8、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去

8、当时,在单调递增所以,解得,符合要求;综上可知或故选:A.9、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,在上有零点故选:D.【点睛】本题考查方程解与函数零点问题掌握零点存在定理是解题关键10、C【解析】由在区间是单调减函数可知,又,故选.考点:1.指数函数的性质;2.函数值比较大小.11、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,.故选:A.12、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、2【解析】设扇形的半径为,则弧长

9、为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:214、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.15、【解析】详解】由图可知,所以)所以,故,即,即得16、【解析】利用正方体可判断的正误,利用公理3及其推论可判断的正误.【详解】如图,在正方体中,但是异面,故错误.又交于点,但不共面,故错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故错误.如图,因为,故共面于,因为,故,故即,而,

10、故,故即即共面,故正确.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、 (1) (2)见解析【解析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数解析式确定函数的最大值即可.【详解】(1) .由题意得,化简得.(2),可得,.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.18、(1),函数单调递增区间:,;(2).【解析】(1)利用函数的周期求解,得到函数的解析式,然后求解函数的单调增区间;(2

11、)由题得,再利用三角函数的图象和性质求解.【详解】解:(1)函数的最小正周期可得,所以,所以函数,由,所以,可得,所以函数单调递增区间:,(2)由题得,因为所以所以所以函数在区间上的值域为.19、(1)详见解析(2)30【解析】(1)连接A1B,结合三角形中位线定理,得到平行,结合直线与平面平行,的判定定理,即可(2)取的中点N,连接,利用直线与平面垂直判定定理,得到平面,找出即为所求的角,解三角形,计算该角 的大小,即可【详解】解:(1)证明:如图,连接A1B.在A1BC中,因为E和F分别是BC和A1C的中点,所以EFBA1.又EF平面A1B1BA,所以EF平面A1B1BA(2)解:因为AB

12、AC,E为BC的中点,所以AEBC.因为AA1平面ABC,BB1AA1,所以BB1平面ABC,从而BB1AE.又BCBB1B,所以AE平面BCB1,.取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NEB1B,NEB1B,故NEA1A且NEA1A,所以A1NAE,且A1NAE.因为AE平面BCB1,所以A1N平面BCB1,从而A1B1N为直线A1B1与平面BCB1所成的角在ABC中,可得AE2,所以A1NAE2.因为BMAA1,BMAA1,所以A1MAB,A1MAB,由ABBB1,有A1MBB1.在RtA1MB1中,可得A1B14.在RtA1

13、NB1中,sinA1B1N,因此A1B1N30.所以直线A1B1与平面BCB1所成的角为30【点睛】本题考查了直线与平面垂直、平行判定定理和直线与平面所成角的找法,证明直线与平面平行关键找出一条直线与平面内一条直线平行,直线与平面所成角的找法关键找出直线垂直平面的那条直线,建立角,解三角形,即可20、(1);(2),【解析】(1)根据指数、对数运算性质求解即可.(2)根据三角函数定义求解即可.【详解】(1).(2)由题知:,所以,21、(1)或(2)【解析】(1)诱导公式化简可得,结合,求解即可;(2)代入,结合诱导公式化简可得,即,利用二倍角公式化简可得,代入即得解【小问1详解】由题意,若,则或【小问2详解】若,则即,即故22、(1)或,(2)【解析】(1)根据并集和交集定义即可求出;(2)根据补集交集定义可求.【小问1详解】因为,或,所以或,;【小问2详解】或,所以.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服