ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:475.54KB ,
资源ID:2524104      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2524104.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(北京朝阳陈经纶中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

北京朝阳陈经纶中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12小题,共60分)1在平行四边形中,设,下列式子中不正确的是()A.B.C.D.2半径为的半圆卷成一个圆锥,则它的体积为()A.B.C.D.3已知集合,集合,则AB()A.B.C.D.4在正项等比数列中,若依次成等差数列,则的公比为A.2B.C.3D.5关于不同的直线与不同的平面,有下列四个命题:, ,且,则 ,

2、 ,且,则, ,且,则 , ,且,则其中正确命题的序号是A. B.C.D.6已知,则的值为()A.4B.4C.8D.87若函数在单调递增,则实数a的取值范围为()A.B.C.D.8设命题:,则的否定为()A.B.C.D.9设和两个集合,定义集合,且,如果,那么A.B.C.D.10下列选项正确的是( )A.B.C.D.11已知函数,若当时,恒成立,则实数的取值范围是A.B.C.D.12铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A.B.C.D.二、填空题(本大题共4小题,共20分)13

3、设函数f(x)=,则f(-1)+f(1)=_14命题的否定是_15已知,则,的大小关系是_(用“”连接)16函数最小值为_三、解答题(本大题共6小题,共70分)17设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值18设全集为,或,.(1)求,;(2)求.19设函数,且,函数(1)求的解析式;(2)若方程b=0在 2,2上有两个不同的解,求实数b的取值范围20已知函数,(,且)(1)求函数的定义域;(2)当时,求关于的不等式的解集21在底面为平行四边形的四棱锥中,平面,且,点是的中点()求证:;()求证:平面;22已知函数,且.(1)求实数及的值;(2)判断函数

4、的奇偶性并证明.参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据向量加减法计算,再进行判断选择.【详解】;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.2、A【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.3、B【解析】化简集合B,再求集合A,B的交集即可.【详解】集合,集合,.故选:B.4、A【解析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【详解】由题意知,又为正项等比数列,所以,且

5、,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题5、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于,若, ,且,显然一定有,故正确;对于,因为, ,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于,若,/ 且/,则一定有,故正确;对于, ,且,则与的位置关系不定,故错故正确的序号有:.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.6、C【解析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可

6、求值.【详解】由题意知:,即,而.故选:C.【点睛】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.7、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,解得,所以实数a的取值范围为.故选:D8、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.9、D【解析】根据的定义,可求出,然后即可求出【详解】解:,; .故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题1

7、0、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,所以,故C错误;对于D:因为,即,所以,故D错误;故选:A11、D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D点睛:本题考查函数的奇偶性和单调性应用本题中,结合函数的奇偶性和单调性的特点,转化得到,分参,结合恒成立的特点,得到,求出参数范围12、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.二、填空题(本大题共4小题,共20分)13、3【解析】直接利用函数的解析式,求函数值即可【

8、详解】函数f(x)=,则=3故答案为3【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力14、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:15、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,所以故答案为:16、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)2【解析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数,再根据奇偶性与单调

9、性即可解出不等式;(2)由(1)得,令,由得,利用换元法转化为二次函数的最值,再分类讨论即可求出答案【详解】解:(1)由题意,得,即,解得,由,得,即,解得,或(舍去),函数在上为增函数,由,得,解得,或,的取值范围是;(2)由(1)得,令,由得,函数转化为,对称轴,当时,即,解得,或(舍去);当时,解得(舍去);综上:【点睛】本题主要考查函数奇偶性与单调性的综合应用,考查二次函数的最值问题,考查转化与化归思想,考查分类讨论思想,属于中档题18、(1)或,(2)或【解析】(1)根据集合的交集和并集的定义即可求解;(2)先根据补集的定义求出,然后再由交集的定义即可求解.【小问1详解】解:因为或,

10、所以或,;【小问2详解】解:因为全集为,或,所以或,所以或.19、(1),(2)【解析】(1);本题求函数解析式只需利用指数的运算性质求出a的值即可, (2)对于同时含有的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题试题解析:解:(1),且 (2)法一:方程为 令,则-且方程为在有两个不同的解设 , 两函数图象在内有两个交点由图知时,方程有两不同解.法二: 方程为 ,令,则方程在 上有两个不同的解设解得考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类

11、型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错20、(1) (2)【解析】(1)求使函数有意义的的范围即可;(2)根据函数的单调性解不等式组可得答案.【小问1详解】由题意可得,解得,故函数的定义域为【小问2详解】当时,函数是增函数,因为,所以,解得故原不等式的解集为21、(1)见解析;(2)见解析【解析】()由已知得,从而平面,由此能证明;()连接与相交于,连接,由已知得,由此能证明平面试题解析:()由平面可得AC,又, 故AC平面PAB,所以.()连BD交AC于点O,连EO,则EO是PDB的中位线,所以EOPB又因为面,面,所以PB平面22、(1),;(2)是奇函数,证明见解析.【解析】(1)根据,代入计算可得的值,即可求出函数的解析式,再代入计算可得;(2)首先求出函数的定义域,再计算即可判断;【详解】解:(1)因为,且. 所以 解得, 所以所以 (2)由(1)可得.因为函数的定义域为,关于原点对称且,所以是奇函数.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服