ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:165.01KB ,
资源ID:2524048      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2524048.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一般的一元二次方程的解法—知识讲解.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一般的一元二次方程的解法—知识讲解.doc

1、一元二次方程的解法(二)一般的一元二次方程的解法知识讲解(提高)【学习目标】1了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程;2掌握运用配方法和公式法解一元二次方程的基本步骤;3通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想【要点梳理】要点一、一元二次方程的解法-配方法1配方法解一元二次方程:(1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依

2、据是公式:.(3)用配方法解一元二次方程的一般步骤:把原方程化为的形式;将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;方程两边同时加上一次项系数一半的平方;再把方程左边配成一个完全平方式,右边化为一个常数;若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式要点二、配方法的应用1用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此

3、差大于零(或小于零)而比较出大小.2用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值3用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值4用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好 要点三、公式法解一元二次方程1.一元二次方程的求根公式 一元二次方程,当时

4、,.2.一元二次方程根的判别式一元二次方程根的判别式: 当时,原方程有两个不等的实数根; 当时,原方程有两个相等的实数根; 当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤: 把一元二次方程化为一般形式; 确定a、b、c的值(要注意符号); 求出的值; 若,则利用公式求出原方程的解; 若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为: 当时,右端是正数因此,方程有两个不相等的实根: 当时,右端是零因此,方程有两个相等的实根: 当时,右端是

5、负数因此,方程没有实根.【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程:(1); (2)【答案与解析】(1)移项,得配方,得即直接开平方,得, ,(2)移项,得,方程两边同除以2,得,配方,得,即,直接开平方,得 ,【总结升华】方程(1)的二次项系数是1,方程(2)的二次项系数不是1,必须先化成1,才能配方,这是关键的一步配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解同时要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方举一反三:【变式】 用配方法解方程 (1) (2)【答案】(1) .(2)当时,此方程有

6、实数解,;当时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明的值小于0【答案与解析】 , ,即故的值恒小于0【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致举一反三:【变式】试用配方法证明:代数式的值不小于【答案】 , 即代数式的值不小于3. 若实数满足,则的值是() 【答案】C;【解析】对已知等式配方,得,故选【总结升华】本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值举一反三:【变式】

7、(1)的最小值是 ;(2)的最大值是 . 【答案】(1); 所以的最小值是(2) 所以的最大值是9.4. 分解因式:【答案与解析】【总结升华】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式类型三、公式法解一元二次方程5解关于x的方程【答案与解析】(1)当m+n0且m0,n0时,原方程可化为 m0,解得x1(2)当m+n0时, , , , ,【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论举一反三:【变式】解关于的方程;【答案】原方程可化为 6 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)4m; 【答案与解析】方程整理为, , a1,b-2,c-13, , , ,【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【变式】用公式法解下列方程: 【答案】

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服