ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:148.04KB ,
资源ID:2523488      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2523488.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数值分析课程设计实验二.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数值分析课程设计实验二.doc

1、(完整word版)数值分析课程设计实验二实验二21一、题目: 用高斯消元法的消元过程作矩阵分解。设消元过程可将矩阵A化为上三角矩阵U,试求出消元过程所用的乘数、并以如下格式构造下三角矩阵L和上三角矩阵U验证:矩阵A可以分解为L和U的乘积,即A=LU。二、算法分析:设矩阵,通过消元法可以将其化成上三角矩阵U,具体算法如下:第1步消元:得到第2步消元:得到的矩阵为三、程序及运行结果b1.mA=20 2 3;1 8 1;2 -3 15;for i=1:2M(i)=A(i+1,1)/A(1,1);endfor j=2:3 A1(j,2)=A(j,2)-M(j-1)*A(1,2); A1(j,3)=A(

2、j,3)-M(j-1)*A(1,3);endM(3)=A1(3,2)/A1(2,2);A1(3,2)=0;A1(3,3)=A1(3,3)-M(3)*A1(2,3);M,A1运行结果为:M = 0.0500 0.1000 -0.4051A1 = 0 0 0 0 7.9000 0.8500 0 0 15.0443所以:验证:L=1 0 0;0.05 1 0;0.1 -0.4051 1;U=20 2 3;0 7.9 0.85;0 0 15.0443;A1=L*UA1 = 20.0000 2.0000 3.0000 1.0000 8.0000 1.0000 2.0000 -3.0003 15.0000

3、四、精度分析因为根据LU的递推公式可知,L,U分别为下三角和上三角矩阵,其中L不在对角线上的元素值为,在计算每个系数时会产生相应的计算误差。 22一、题目用矩阵分解方法求上题中A的逆矩阵。记分别求解方程组由于三个方程组系数矩阵相同,可以将分解后的矩阵重复使用。对第一个方程组,由于A=LU,所以先求解下三角方程组,再求解上三角方程组,则可得逆矩阵的第一列列向量;类似可解第二、第三方程组,得逆矩阵的第二列列向量的第三列列向量。由三个列向量拼装可得逆矩阵。二、算法分析首先根据LU分解,将矩阵A分解成下三角矩阵L和上三角矩阵U乘积的形式。然后分别求解方程组和。通过计算可知 最后求解得到的矩阵三、程序及

4、运行结果b2.mb1=1 0 0;b2=0 1 0;b3=0 0 1;L=1 0 0;0.05 1 0;0.1 -0.4 1;U=20 2 3;0 8 0.85;0 0 15.04;y1=inv(L)*b1;x1=inv(U)*y1;y2=inv(L)*b2;x2=inv(U)*y2;y3=inv(L)*b3;x3=inv(U)*y3;x1,x2,x3,x1,x2,x3运行结果为:x1 = 0.0517 -0.0054 -0.0080x2 = -0.0162 0.1222 0.0266x3 = -0.0093 -0.0071 0.0665ans = 0.0517 -0.0162 -0.0093

5、 -0.0054 0.1222 -0.0071 -0.0080 0.0266 0.0665四、精度分析矩阵A经过LU分解后得到上三角U和下三角矩阵L,分别进行 和计算时便产生了计算误差,所以最后结果与存在一定的误差。22一、题目验证希尔伯特矩阵的病态性:对于三阶矩阵取右端向量,验证:(1)向量是方程组的准确解;(2)取右端向量b的三位有效数字得,求方程组的准确解,并与X的数据作比较 。说明矩阵的病态性。二、算法分析(1)要验证向量X是方程的准确解,只需求解出该方程的解并与X作个比较即可。因为,所以(2)与第一题算法一样,根据求解出三、程序及运行结果b3.mb1=11/6 13/12 47/60;b2=1.83 1.08 0.783;H=1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5;x1=inv(H)*b1x2=inv(H)*b2运行结果为:x1 = 1.0000 1.0000 1.0000x2 = 1.0800 0.5400 1.4400四、精度分析(1)通过x1的运行结果可知,是方程准确解。(2)通过x2的运行结果可知,由于与的误差非常小,可是它们的计算结果却差别很大,根据病态矩阵的定义可知,矩阵H为病态的。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服