ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:146.55KB ,
资源ID:2522097      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2522097.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数形结合专题课(乘法公式(因式分解)的几何解释)--沈佳.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数形结合专题课(乘法公式(因式分解)的几何解释)--沈佳.doc

1、虎山路初中七年级数学学科导学案 主备人: 沈佳 备课组长:华燕平 审核人: 使用人: 乘法公式(因式分解)的几何解释 “数形结合”思想学习目标:1、理解乘法公式(多项式乘法)与几何图形表示之间的相互推导 2、体会数形结合,能熟练“数”与“形”之间的转化一、回顾旧知、预学展示1、边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请你分别表示出图1阴影部分的面积S1,图2阴影部分的面积S2 a2-b2(a+b)(a-b)(2)请问以上结果可以验证哪个乘法公式? 2、在边长为a的正方形中剪去一个边长为b的小正方形,把剩下部分如图所示拼成一个长方形.(1)请

2、你分别表示出两个图形中阴影部分的面积S1,S2 a2-b2(a+b)(a-b)(2)请问以上结果可以验证哪个因式分解? 3、前两题都通过图形变换,用不同的方式表示了相同的面积(阴影部分的面积),证明了乘法公式 的正确性,思考一下,你还能够将图1中的阴影部分转化成其它几何图形吗(画出图形)?是否也能证明以上的乘法公式(写出证明过程)!(小贴士:动手做一做,思路会更清晰哦,方法越多越好) 图14、如图1,边长为(a+b)的正方形,按图2所示分割.请用不同的方法来表示大正方形的面积,从而验证了哪个乘法公式? 图1图25、想要证明,由上题启发,从等式出发,你该如何构造下面的正方形?6、图是一个长为2m

3、、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图的形状拼成一个正方形(1)图中的阴影部分的面积为 ;(2)观察图请你写出三个代数式、之间的等量关系是 (3)若,则 二、归纳方法、思想提炼已知图形的变换,根据面积 ,列出等式,可得乘法公式(多项式乘多项式),即由“形”到“数”(1、2、4题);已知乘法公式(多项式乘多项式的结果),同样可以得到图形分割、拼接的思路,从而构造出可证明乘法公式的图形变换,即由“数”到“形”(3、5题);由“数”到“形”,再由“形”到“数”,充分利用了 数学思想.三、拓展提高、探究活动7、我们在学习完全平方公式时,了解了一下它的几何背景,即通过图来说明

4、上式成立在习题中我们又遇到了题目“计算:”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并根据图形直接写出的展开式吗?8、如图,现有2张边长为b的正方形纸片,3张长为b、宽为a的长方形纸片和1张边长为a的正方形纸片,试一试,能否将这些纸片拼成一个长方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹)?由此你发现了什么?9、如图2所示是2002年8月20日在北京召开的国际数学家大会的会标它是由四个全等的如图1所示的直角三角形(每个直角三角形两直角边分别是a和b,斜边长为c)与中间的小正方形拼成的一个大正方形请你根据图2中的 面积写出它所能说明的等式,并写出推导过程图1 图2四、目标反思、自我小结1、今天这节课,我们学会从已知的图形变换,来证明 (填公式),体会了乘法公式(或因式分解)的几何解释;2、反之,我们为了得到乘法(或因式分解)的结果,也会从图形入手,巧妙构造图形,也推导出以上 (填公式);3、今天,我们主要感受了 的数学思想,并学会了应用。动手做一做138 使用日期: 年 月 日 星期

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服