1、15、如果的解都是正数,那么a的取值范围是( )
(A)a<2; (B); (C); (D);
16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是( )
(A)2; (B)-1; (C)1; (D)-2;
17、在下列方程中,只有一个解的是( )
(A) (B)
(C) (D)
20、已知方程组有无数多个解,则a、b的值等于( )
(A)a=-3,b=-14 (B)a=3,b=-7
(C)a=-1,b=9 (D)a=-3,b=14
21、若5x-6y=0,且xy≠0,
2、则的值等于( )
(A) (B) (C)1 (D)-1
22、若x、y均为非负数,则方程6x=-7y的解的情况是( )
(A)无解 (B)有唯一一个解
(C)有无数多个解 (D)不能确定
23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是( )
(A)14 (B)-4 (C)-12 (D)12
24、已知与都是方程y=kx+b的解,则k与b的值为( )
(A),b=-4 (B),b=4
(C),b=4 (D),b=-4
31、已知方程组有无数多解,则a=__
3、m=______;
38、 37、;
45、当a、b满足什么条件时,方程(2b2-18)x=3与方程组都无解;
46、a、b、c取什么数值时,x3-ax2+bx+c程(x-1)(x-2)(x-3)恒等?
47、m取什么整数值时,方程组的解:
(1)是正数;
(2)是正整数?并求它的所有正整数解。
3、解关于的方程
4、已知方程组,试确定的值,使方程组:
(1)有一个解;(2)有无数解;(3)没有解
5、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣
4、的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
9某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:将蔬菜全部进行粗加工;
5、
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?为什么?
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,
6、你选择哪种进货方案?
思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题. 本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.
解:方案一获利为:4500×140=630000(元).
方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).
方案三获利如下:
设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:
,解得:
所以
7、方案三获利为:7500×60+4500×80=810000(元).
因为630000<725000<810000,所以选择方案三获利最多
答:方案三获利最多,最多为810000元。
总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.
二、13、D; 14、B; 15、C; 16、A; 17、C; 18、A;
19、C; 20、A;21、A; 22、B; 23、B; 24、A;
三、25、,8,; 26、2; 27、; 28、a=3,b=1;
29、 30、; 31、3,-4 32、1; 33、20;
34、a为大于或等于3的奇数; 35、4:3,7:9 36、0;
四、37、; 38、; 39、; 40、;
五、47、,; 48、a=-1 49、11x2-30x+19;
50、; 51、,b=±3 52、a=6, b=11, c=-6;
53、(1)m是大于-4的整数,(2)m=-3,-2,0,,,;
54、或;