ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:126KB ,
资源ID:2487828      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2487828.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(基于多数据融合传感器的分布式温度控制系统中英文对照.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于多数据融合传感器的分布式温度控制系统中英文对照.doc

1、 DISTRIBUTED TEMPERATURE CONTROL SYSTEM BASED ON MULTI-SENSOR DATA FUSION Cai Yan, Yang Hailan ,Hua Xueming and Wu Yixiong Abstract: Temperature control system has been widely used over the past decades. In this paper, a general architecture of distributed temperature control system i

2、s put forward based on multi-sensor data fusion and CAN bus. A new method of multi-sensor data fusion based on parameter estimation is proposed for the distributed temperature control system. The major feature of the system is its generality, which is suitable for many fields of large scale temperat

3、ure control. Experiment shows that this system possesses higher accuracy, reliability, good real—time characteristic and wide application prospect Keywords: Distributed control system; CAN bus; intelligent CAN node; multi-sensor data fusion. 1. Introduction Distributed temperature control sy

4、stem has been widely used in our daily life and production, including intelligent building, greenhouse, constant temperature workshop, large and medium granary, depot, and so on[1]. This kind of system should ensure that the environment temperature can be kept between two predefined limits. In the c

5、onventional temperature measurement systems we build a network through RS-485 Bus using a single-chip metering system based on temperature sensors. With the aid of the network, we can carry out centralized monitoring and controlling. However, when the monitoring area is much more widespread and tran

6、smission distance becomes farther, the disadvantages of RS-485 Bus become more obvious. In this situation, the transmission and response speed becomes lower, the anti-interference ability becomes worse. Therefore, we should seek out a new communication method to solve the problems produced by RS-485

7、 Bus. During all the communication manners, the industrial control-oriented field bus technology can ensure that we can break through the limitation of traditional point to point communication mode and build up a real distributed control and centralized management system. As a serial communication

8、protocol supporting distributed real-time control, CAN bus has much more merits than RS-485 Bus, such as better error correction ability, better real-time ability, lower cost and so on. Presently, it has been extensively used in the implementation of distributed measurement and control domains. Wi

9、th the development of sensory technology, more and more systems begin to adopt multi-sensor data fusion technology to improve their performances. Multi-sensor data fusion is a kind of paradigm for integrating the data from multiple sources to synthesize the new information so that the whole is great

10、er than the sum of its parts [3][4][5]. And it is a critical task both in the contemporary and future systems which have distributed networks of low-cost, resource-constrained sensors 2. Distributed architecture of the temperature control system The distributed architecture of the temperature con

11、trol system is depicted in the Figure 1. As can be seen, the system consists of two modules—several intelligent CAN nodes and a main controller. They are interconnected with each other through CAN bus. Each module performs its part into the distributed architecture. The following is a brief descript

12、ion of each module in the architecture. 3.1main controller As the system’s main controller, the host PC can communicate with the intelligent CAN nodes. It is devoted to supervise and control the whole system, such as system configuration, displaying running condition, parameter initialization a

13、nd harmonizing the relationships between each part. What’s more, we can print or store the system’s history temperature data, which is very useful for the analysis of the system performance 3.2. Intelligent CAN node Each intelligent CAN node of the temperature control system includes five units:

14、MCU—a single chip, A/D conversion unit, temperature monitoring unit—sensor group, digital display unit and actuators—a cooling unit and a heating unit. The operating principle of the intelligent CAN node is described as follows. In the practical application, we divide the region of the control obj

15、ective into many cells, and lay the intelligent CAN nodes in some of the typical cells. In each node, MCU collects temperature data from the temperature measurement sensor groups with the aid of the A/D conversion unit. Simultaneously, it performs basic data fusion algorithms to obtain a fusion valu

16、e which is more close to the real one. And the digital display unit displays the fusing result of the node timely, so we can understand the environment temperature in every control cell separately. By comparing the fusion value with the set one by the main controller, the intelligent CAN node can

17、implement the degenerative feedback control of each cell through enabling the corresponding heating or cooling devices. If the fusion result is bigger than the set value in the special intelligent CAN node, the cooling unit will begin to work. On the contrary, if the fusion result is less than the s

18、et value in the node the heating unit will begin to work. By this means we can not only monitor the environment temperature, but also can make the corresponding actuator work so as to regulate the temperature automatically. At the same time every CAN node is able to send data frame to the CAN bus wh

19、ich will notify the main controller the temperature value in the cell so that controller can conveniently make decisions to modify the parameter or not. Since the CAN nodes can regulate the temperature of the cell where they are, the temperature in the whole room will be kept homogeneous. What’s mor

20、e, we can also control the intelligent node by modifying the temperature’s setting value on the host PC. Generally, the processors on the spot are not good at complex data processing and data fusing, so it becomes very critical how to choose a suitable data fusion algorithm for the system. In the p

21、osterior section, we will introduce a data fusion method which is suitable for the intelligent CAN nodes。 4. Multi-sensor data fusion The aim to use data fusion in the distributed temperature control system is to eliminate the uncertainty, gain a more precise and reliable value than the arithme

22、tical mean of the measured data from finite sensors. Furthermore, when some of the sensors become invalid in the temperature sensor groups, the intelligent CAN node can still obtain the accurate temperature value by fusing the information from the other valid sensors. 4.1. Consistency verification

23、 of the measured data During the process of temperature measurement in our designed distributed temperature control system, measurement error comes into being inevitably because of the influence of the paroxysmal disturb or the equipment fault. So we should eliminate the careless mistake before da

24、ta fusion. We can eliminate the measurement errors by using scatter diagram method in the system equipped with little amount of sensors. Parameters to represent the data distribution structure include median—TM, upper quartile number—Fv, lower quartile number—FL and quartile dispersion—dF. It is

25、 supposed that each sensor in the temperature control system proceeds temperature measurement independently. In the system, there are eight sensors in each temperature sensor group of the intelligent CAN node. So we can obtain eight temperature values in each CAN node at the same time. We arrange th

26、e collected temperature data in a sequence from small to large: T1, T2, …, T8 In the sequence, T1 is the limit inferior and T8 is the limit superior. We define the median—TM as: (1) The upper quartile—Fv is the median of the interval [TM, T8].The lower

27、quartile number—FL is the median of the interval [T1, TM].The dispersion of the quartile is: (2) We suppose that the data is an aberration one if the distance from the median is greater than adF, that is, the estimation interval of invalid data is: (3) In the formula, a is a constant,

28、 which is dependent on the system measurement error, commonly its value is to be 0.5, 1.0, 2.0 and so on. The rest values in the measurement column are considered as to be the valid ones with consistency. And the Single-Chip in the intelligent CAN node will fuse the consistent measurement value to

29、 obtain a fusion result 5. Temperature measurement data fusion experiment By applying the distributed temperature control system to a greenhouse, we obtain an array of eight temperature values from eight sensors as follows The mean value of the eight measurement temperature result is

30、Comparing the mean value (8)T with the true temperature value in the cell of the greenhouse, we can know that the measurement error is +0.5℃. After we eliminate the careless error from the fifth sensor using the method introduced before, we can obtain the mean value of the rest seven data (7)T=29.6℃

31、 the measurement error is -0.4℃. The seven rest consistent sensor can be divided into two groups with sensor S1, S3, S7 in the first group and sensor S2, S4, S6, S8 in the second one. The arithmetical mean of the two groups of measured data and the standard deviation are as follows respectively

32、 According to formula (13), we can educe the temperature fusion value with the seven measured temperature value. The error of the fusion temperature result is -0.3℃. It is obvious that the measurement result from data fusion is more close to the true value than that from arithmetical mean. I

33、n the practical application, the measured temperature value may be very dispersive as the monitoring area becomes bigger, data fusion will improve the measuring precision much more obviously. 6. Conclusions The distributed temperature control system based on multi-sensor data fusion is construc

34、ted through CAN bus. It takes full advantage of the characteristics of field bus control system---FDCS. Data acquisition, data fusion and system controlling is carried out in the intelligent CAN node, and system management is implemented in the main controller (host PC). By using CAN bus and data fu

35、sion technology the reliability and real-time ability of the system is greatly improved. We are sure that it will be widely used in the future. References [1]D.SuandW.McFarland,“A2.5-V,1-WmonolithicCMOSRFpower amplifier,”inProc.IEEECustomIntegratedCircuitsConf.,1997,pp. 189–192. [2]D.K.SuandW

36、J.McFarland,“AnICforlinearizingRFpoweramplifiers usingenvelopeeliminationandrestoration,”IEEEJ.ofSolid-State Circuits,vol.33,no.12,pp.2252–2258,Dec.1998. [3]B.Baliweber,R.Gupta,andD.J.Allstot,“Fully-integratedCMOS RFamplifier,”inProc.IEEEInt.Solid-StateCircuitsConf.,1999,pp. 72–73. [4]A.Giry,

37、J.-M.Fourniert,andM.Pons,“A1.9GHzlowvoltageCMOS poweramplifierformediumpowerRFapplications,”inProc.IEEE RadioFrequencyIntegratedCircuits(RFIC)Symp.,2000,pp.121–124. [5]C.FallesenandP.Asbeck,“A1W0.35 mCMOSpoweramplifier forGSM-1800with45%PAE,”inProc.IEEEInt.Solid-StateCircuits Conf.,2001,pp.158–

38、159. [6]R.Gupta,B.M.Ballweber,andD.J.Allstot,“Designandoptimization ofCMOSRFpoweramplifiers,”IEEEJ.Solid-StateCircuits,vol.36, no.2,pp.166–175,Feb.2001. 基于多数据融合传感器的分布式温度控制系统 蔡艳,杨海澜,许轲,吴毅雄 摘要: 在过去的几十年,温度控制系统已经被广泛的应用。对于温度控制提出了一种基于多传感器数据融合和CAN总线控制的一般结构。一种新方法是基于多传感器数据融合估计算法参数分布式温控系统。该系统

39、的重要特点是其共性,其适用于很多具体领域的大型的温度控制。实验结果表明该系统具有较高的准确性、可靠性,良好的实时性和广泛的应用前景。 关键词: 分布式控制系统;CAN总线控制;智能CAN节点;多数据融合传感器。 1介绍 分布式温度控制系统已经被广泛的应用在我们日常生活和生产,包括智能建筑、温室、恒温车间、大中型粮仓、仓库等。这种控制保证环境温度能被保持在两个预先设定的温度间。在传统的温度测量系统中,我们用一个基于温度传感器的单片机系统建立一个RS-485局域网控制器网络。借助网络,我们能实行集中监控和控制.然而,当监测区域分布更广泛和传输距离更远,RS-485总线控制系

40、统的劣势更加突出。在这种情况下,传输和响应速度变得更低,抗干扰能力更差。因此,我们应当寻找新的通信的方法来解决用RS-485总线控制系统而产生的问题。在所有的通讯方式中,适用于工业控制系统的总线控制技术,我们可以突破传统点对点通信方式的限制、建立一个真正的分布式控制与集中管理系统,CAN总线控制比RS-485总线控制系统更有优势。比如更好的纠错能力、改善实时的能力,低成本等。目前,它正被广泛的应用于实现分布式测量和范围控制。 随着传感器技术的发展,越来越多的系统开始采用多传感器数据融合技术来提高他们的实现效果。多传感器数据融合是一种范式对多种来源整合数据,以综合成新的信息,比其他部分

41、的总和更加强大。无论在当代和未来,系统的低成本,节省资源都是传感器中的一项重要指标。 2分布式架构的温度控制系统 分布式架构温度控制系统如图中所示的图1。可以看出,这系统由两个模块——两个智能CAN节点和一个主要的控制器组成。每个模块部分执行进入分布式架构。下面的是简短的描述下各模块。 3.1主要控制器 作为系统的主要控制器,这主pc能和智能CAN节点通信。它致力于监督和控制整个系统,系统配置、显示运行状况、参数初始化和协调各部分间的关系。更重要的是,我们能打印或储存系统的历史温度的数据,这对分析系统性能是非常有用的。 3.2智能CAN节点 每一个温度控制系

42、统的智能CAN节点有五个部分:MCU—一个单片机,A/D转换单元,温度监测单元—传感器群,数字显示器,激发器—一个冷却单元和供暖单元。接下来介绍智能CAN节点的工作原理。 在实际操作中,我们划分控制的目标进入一些单元,储存智能CAN节点在一些典型的单元。在每个节点,单片机借助A / D转换单位从温度测量传感器收集温度数据。同时,它执行基本的数据融合运算获得运算的结果,更接近实际。数字显示器及时显示融合节点的结果,所以我们能及时了解在每个控制单元所处的环境温度。 通过比较融合值用主控制器构建一个,这样智能CAN节点可以通过相应的加热或冷却装置实现反馈控制各单元。如果在特别的智

43、能CAN节点融合结果大于设定值,冷却单位将开始工作。相反,如果在节点融合的结果低于设定值加热单位将开始工作。用这种方法,我们不仅能监控环境温度,还能做相应的触发器来实现温度的自动调节。与此同时,每个CAN节点发送数据帧到CAN总线,CAN总线将告知在着单元中的主控制器这温度值,那么这控制器能便利的作出是否修改这参数的决定。自从这CAN节点有调节温度的单元在,整个房间的温度将保持均匀。更重要的是,我们也可以通过在主pc上修改温度的设定值来控制这智能节点。 一般来说,处理器不擅长即时的复杂的数据处理和数据融合,所以如何选择合适的数据融合算法对系统变得至关重要。后一节中,我们将介绍适合于智

44、能CAN节点的数据融合方法。 4.多传感器数据融合 旨在利用数据融合在分布式温度控制系统中来消除不确定性,获得更精确、可靠是比从限定的传感器的测量数据的算数平均值更重要。当一些传感器的温度传感器变为无效的,这智能CAN节点还可以通过熔断这些信息而从有用的传感器获得精确温度。 4.1实测数据的一致性核实 在我们设计的分布式温度控制系统的温度测量的过程中,突发性干扰或设备故障的影响不可避免的产生测量误差。所以在数据融合前我们应该消除错误的误差。 我们可以利用系统中配备的少量传感器用散点图发消除这个测量误差。用参数来代表数据分布结构包括中值——TM,上四位数—— F

45、v,下四位数——FL和分散四位数——dF. 人们认为每个传感器在温度控制系统的温度测量所得独立。在系统中,有八个传感器在各智能CAN节点的温度传感器群。所以我们在每个CAN节点同一时刻能获得8个温度值。我们安排收集到的温度数据序列由小到大: T1, T2, …, T8 在序列中,T1是最低位而T8是最高位。我们定义TM为: 上四位数——Fv是区间[TM, T8]的中值,低四位数—— Fl是区间[T1, TM]的中值,这四位数的离散是:。 该公式,一个是常数,取决于系统测量误差, 通常值是0.5,1.0,2.0等等。在数列中其余的测量值都被看作

46、是于有效值一致的。在智能CAN节点的单片机智将把一致的测量值融合。 5. 温度测量的数据融合的举例 分布式温度控制系统运用于一间温室, 我们从8个温度传感器获得一组8个温度值如下 八个温度测量值的结果 把在这温室中的八个温度的平均值和真实的温度值做比较,我们可以知道测量误差是+ 0.5℃。之后在介绍这个方法前我们消除从这第五个传感器的测量误差,我们能得到的剩余的七个数据的平均值(7)T = 29.6℃, 测量误差是-0.4℃.这剩下的七个传感器被分成两个传感器组,S1, S3, S7 是第一组,S2, S4, S6, S8 是第二组。两组测量数据的算术平均和标准偏差分别

47、如下: 根据公式(13), 我们可以用七个测量温度确定温度融合值。 融合温度的结果的误差是-0.3℃。 很明显,数据融合测量结果比算术的平均值更接近于实际值。在实际操作中,测量温度可能是很分散的变得更大的监测区域,数据融合将更加明显提高了测量精度。 6.总结 这基于多数据融合传感器的分布式温度控制系统是通过CAN总线构建。它充分利用了FDCS即时总线控制系统的特点。数据采集,数据融合,系统控制用智能CAN节点得到实现,而系统管理通过主控制器(host PC)被实现。通过使用CAN总线与数据融合技术系统的可靠性和实时的能力被大大提高了。我们确定它在将来会得到广泛

48、的应用。 目 录 第一章 总论 5 1.1项目概要 5 1.2可行性研究报告编制依据 8 1.3综合评价 8 第二章 项目背景及必要性 11 2.1项目建设背景 11 2.2项目建设的必要性 13 第三章 建设条件 16 3.1项目区概况 16 3.2项目建设条件优劣势分析 21 第四章 市场分析与销售方案 26 4.1市场分析 26 4.2销售策略、营销方案和模式 29 4.3风险分析 30 第五章 项目建设方案 32 5.1建设任务和规模 32 5.2建设规划和布局 32 5.3工艺(技术)方案 32 5.4建设内容 35 5.5实

49、施进度安排 36 第六章 环境影响评价 38 6.1环境影响 38 6.2环境保护与治理措施 38 第七章 项目组织与管理 40 7.1组织机构与职能划分 40 7.2劳动定员 40 7.3经营管理模式 41 7.4经营管理措施 41 7.5技术培训 42 7.6劳动保护、安全卫生与消防 42 第八章 投资概算与资金来源 44 8.1投资概算依据 44 8.2投资概算 44 8.3资金来源 46 第九章 财务评价 47 9.1财务评价依据 47 9.2销售收入、销售税金和附加估算 47 9.3总成本及经营成本估算 48 9.4财务效益分析 49 9.5不确定性分析 50 9.6财务评价结论 51 第十章 社会效益评价 52 10.1社会评价基本结论 52 10.2农业产业化经营 52 10.3农民增收、农业增效评价 54 10.4其它社会影响 55 第十一章 可行性研究结论与建议 56 11.1可行性研究结论 56 11.2问题与建议 56

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服