ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:231.01KB ,
资源ID:2486443      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2486443.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(浙教版中考数学专题复习——分类讨论题.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

浙教版中考数学专题复习——分类讨论题.doc

1、分类讨论题类型之一 直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1(沈阳市)若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( )A50B80C65或50D50或80【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50角是顶角时,则(18050)2=65,所以另两角是65、65;(2)当50角是底角时,则180502=80,所以顶角为80。故顶角可能是50或80.答案:D.同步测试:1.(乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为( )A9cmB12cm C15c

2、mD12cm或15cm2. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B处,点A落在点A处,(1)求证:BE=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论 圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等例2.(湖北罗田)在RtABC中,C900,AC3,BC4.若以C点为圆心, r为半径 所作的圆与斜边AB只有一个公共点,则r的取值范围是_ _【解析】圆与斜边AB只有一个公共点有两种情况

3、,1、圆与AB相切,此时r2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3r4。【答案】 3r4或r2.4同步测试:3.(上海市)在ABC中,AB=AC=5,如果圆O的半径为,且经过点B、C,那么线段AO的长等于 4.(威海市)如图,点A,B在直线MN上,AB11厘米,A,B的半径均为1厘米A以每秒2厘米的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r1+t(t0) (1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切? 类型之三 方程、函数中的分类讨论方程、函数的分类

4、讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.例3.(上海市)已知AB=2,AD=4,DAB=90,ADBC(如图)E是射线BC上的动点(点E与点B不重合),M是线段DE的中点(1)设BE=x,ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与BME相似,求线段BE的长【解析】建立函数关系实质就是把函数y用含自变量x的代数式表示。要求线段的长,可假设线段

5、的长,找到等量关系,列出方程求解。题中遇到“如果以为顶点的三角形与相似”,一定要注意分类讨论。【答案】(1)取中点,联结,为的中点,又,得;(2)由已知得以线段AB为直径的圆与以线段DE为直径的圆外切,即解得,即线段的长为;(3)由已知,以为顶点的三角形与相似,又易证得由此可知,另一对对应角相等有两种情况:;当时,易得得;当时,又,即,得解得,(舍去)即线段BE的长为2综上所述,所求线段BE的长为8或2 同步测试:5.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系已知OA3,OC2,点E是AB的中点,在OA上取一点D,将BDA沿BD

6、翻折,使点A落在BC边上的点F处(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由同步测试答案:1.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm,底边长是6cm时,由于3+3不能大于6所以组不成三角形;当腰长是6cm,地边长是3cm时能组成三角形【答案】D2.【解析】由折叠图形的轴对称性可知,从而可求得BE=BF;第(2)小题要注意分类讨论.【答案】(1)

7、证:由题意得,在矩形ABCD中,(2)答:三者关系不唯一,有两种可能情况:()三者存在的关系是证:连结BE,则由(1)知,在中,()三者存在的关系是证:连结BE,则由(1)知,在中,3.【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。由AB=AC=5,可得BC边上的高AD为4,圆O经过点B、C则O必在直线AD上,若O在BC上方,则AO=3,若O在BC下方,则AO=5。【答案】3或54.【解析】在两圆相切的时候,可能是外切,也可能是内切,所以需要对两圆相切进行讨论.【答案】解:(1)当0t5.5时,函数表达式为d11-2t; 当t5.5时,函数表达式为d2t -11 (2)两圆相切

8、可分为如下四种情况: 当两圆第一次外切,由题意,可得112t11t,t3; 当两圆第一次内切,由题意,可得112t1t1,t; 当两圆第二次内切,由题意,可得2t111t1,t11; 当两圆第二次外切,由题意,可得2t111t1,t13 所以,点A出发后3秒、秒、11秒、13秒两圆相切 5.【解析】解决翻折类问题,首先应注意翻折前后的两个图形是全等图,找出相等的边和角其次要注意对应点的连线被对称轴(折痕)垂直平分结合这两个性质来解决在运用分类讨论的方法解决问题时,关键在于正确的分类,因而应有一定的分类标准,如E为顶点、P为顶点、F为顶点在分析题意时,也应注意一些关键的点或线段,借助这些关键点和线段来准确分类这样才能做到不重不漏解决和最短之类的问题,常构建水泵站模型解决【答案】(1);(2)在中,设点的坐标为,其中,顶点,设抛物线解析式为如图,当时,解得(舍去);解得抛物线的解析式为如图,当时,解得(舍去)当时,这种情况不存在综上所述,符合条件的抛物线解析式是(3)存在点,使得四边形的周长最小如图,作点关于轴的对称点,作点关于轴的对称点,连接,分别与轴、轴交于点,则点就是所求点,又,此时四边形的周长最小值是

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服