ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:284.69KB ,
资源ID:2485934      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2485934.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(年重庆中考数学总复习25题《二次函数》练习及答案.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

年重庆中考数学总复习25题《二次函数》练习及答案.docx

1、二次函数的综合运用此题主要针对中考26题压轴题此题分为三问(1)求函数解析式(二次函数解析式、一次函数解析式、反比例函数解析式);(2)求二次函数中的一些线段长度或某个四边形的面积;(3)求二次函数中某些动点坐标或轨迹。解答题1、 (2013重庆A卷25题) 如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(-3,0)(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值 2、(2013重庆B卷25题)如图,

2、已知正比例函数和反比例函数的图象都经过点A(3,3)(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由 3、(2008重庆)已知:如图,抛物线(a0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)(1)求该抛物线的解

3、析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ当CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)问:是否存在这样的直线l,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由 4、(2011丹东)己知:二次函数(a0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根(1)请直接写出点A、点B的坐标(2)请求出该二次函数表达式及对称轴和顶点坐标(3)如图1,在二次函数对称轴上是否存在点P,使APC的周长最小,若存在,请求

4、出点P的坐标;若不存在,请说明理由(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合)过点Q作QDAC交BC于点D,设Q点坐标(m,0),当CDQ面积S最大时,求m的值 5、如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)ABC的面积为6(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与ABC相似时,请你求出BN的长度;(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由

5、6、(2013珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m)(1)求抛物线l的解析式(用含m的式子表示);(2)把OAD沿直线OD折叠后点A落在点A处,连接OA并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标 7、(2013舟山)如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,ACAB,交y轴于点C,延长CA到点D,使AD=AC,连

6、结BD作AEx轴,DEy轴(1)当m=2时,求点B的坐标;(2)求DE的长?(3)设点D的坐标为(x,y),求y关于x的函数关系式?过点D作AB的平行线,与第(3)题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 8、(2013张家界)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段

7、OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由 9、(2013增城市二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点(1)写出点C的坐标;(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;(3)点P在抛物线的对称轴上,抛物线顶点为D且APD=ACB,求点P的坐标 10、(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是

8、直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由11、(2013新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D

9、,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求ACE的最大面积及E点的坐标 12、(2013安顺)如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标 参考答案1、分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=-

10、1,交x轴于A、B两点,其中A点的坐标为(-3,0),根据二次函数的对称性,即可求得B点(1,0);(2)a=1时,先由对称轴为直线x=-1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x-3,得到C点坐标,然后设P点坐标为(x,x2+2x-3),根据SPOC=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标(4,21)或(-4,5);先运用待定系数法求出直线AC的解析式为y=-x-3,再设Q点坐标为(x,-x-3),则D点坐标为(x,x2+2x-3),然后用含x的代数式表示QD=2、分析:(1)y=x,y= ; (2)y=x-; (3);(4)点E的坐

11、标为(2,)3、(1)(2)可先设Q的坐标为(m,0);通过求CEQ的面积与m之间的函数关系式,来得出CQE的面积最大时点Q的坐标(1,0)(3)本题要分三种情况进行求解:当OD=OF时,OD=DF=AD=2,又有OAF=45,那么OFA是个等腰直角三角形,于是可得出F的坐标应该是(2,2)由于P,F两点的纵坐标相同,因此可将F的纵坐标代入抛物线的解析式中即可求出P的坐标当OF=DF时,如果过F作FMOD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于OAF=45,因此FM=AM=3,也就得出了F的纵坐标,然后根据的方法求出P的坐标当OD=OF时,OF=2,由于O到AC的最

12、短距离为,因此此种情况是不成立的综合上面的情况即可得出符合条件的P的坐标;。4、分析:(1)A(-2,0),B(6,0);(2),顶点坐标(2,8);(3)作点C关于抛物线对称轴的对称点C,连接ACy=x+2,交抛物线对称轴于P点(2,4);(4)由DQAC得BDQBCA,利用相似比表示BDQ的面积,利用三角形面积公式表示ACQ的面积,根据SCDQ=SABC-SBDQ-SACQ=5、分析:(1)(2)已知了B、C的坐标,y=-x+3,点M(1,2),从而求得BM的长,可设出点N(t,0),MBNCBA,MBNABC;BN的长为3或(3)首先设出点P的坐标,然后分三种情况讨论:PC=PD,根据P

13、、C、D三点坐标,分别表示出PC2、PD2的值,由于两式相等,即可求得P点横、纵坐标的关系式,联立抛物线的解析式,即可求得点P的坐标;PD=CD,此时C、D关于抛物线的对称轴对称,则P点坐标(2,3);PC=CD,这种情况下,P点只能位于C点左侧的抛物线上,显然与题意不符6、(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,y=-x2+2mx+m;(2)设AD与x轴交于点M,过点A作ANx轴于点N根据轴对称及平行线的性质得出DM=OM=x,则AM=2m-x,OA=m,在RtOAM中运用勾股定理求出x,得出A点坐标,运用待定系数法得到直线OA的解析式,确定E点坐标(4m

14、,-3m),根据抛物线l与线段CE相交,(4m,-8m2+m)列出关于m的不等式组,求出解集即可;(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解p7、(1)点B的坐标为(0,2);(2)延长EA,交y轴于点F,证出AFCAED,进而证出ABFDAE,利用相似三角形的性质,求出DE=4;(3)根据点A和点B的坐标,得到x=2m,将代入,即可求出二次函数的表达式;作PQDE于点Q,则DPQBAF,然后分(如图1)和(图2)两种情况解答m的值为8或-88、(1)y=-x+1;(2);(3)关键是证明CEQ与CDO均为等腰直角三角形;(4)如答图所示,作点C关于直线QE的对称点

15、C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度利用轴对称的性质、两点之间线段最短可以证明此时PCF的周长最小如答图所示,利用勾股定理求出线段CC的长度,即PCF周长的最小值9、(1)由直线y=-x+3可求出C点坐标C(0,3);(2)由B,C两点坐标便可求出抛物线方程y=x2-4x+3,从而求出抛物线的对称轴x=2和A(1,0)(3)作出辅助线OE,由三角形的两个角相等,证明AECAFP,根据两边成比例,便可求出PF=2,从而求出P点坐标点P的坐标为(2,2)或(2,-2)10、分析

16、(1)y=-x2-2x+3;(2)根据BC是定值,得到当PB+PC最小时,PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,-m2-2m+3),最后表示出EF=-m2-4m-3的长,从而表示出S于m的函数关系,然后求二次函数的最值即可,当m=-2时,S最大,最大值为1此时点E的坐标为(-2,3)11、(1)y=x2-4x+3;(2)利用待定系数法求出直线AC的解析式y=x-1,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D(2,1);(3)根据直线AC的解析式y=x+m,设出过点E与AC平行的直线,然后与抛物线解

17、析式联立消掉y得到关于x的一元二次方程,利用根的判别式=0时,ACE的面积最大,然后求出此时与AC平行的直线y=x,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解面积,F坐标12、分析:(1)由于A(-1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可y=-x2+2x+3(2)分以CD为底和以CD为腰两种情况讨论运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解(3)根据抛物线上点的坐标特点,利用勾股定理求出相关边长,再利用勾股定理的逆定理判断出直角梯形中的直角,便可解答(2,3)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服