ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:332.04KB ,
资源ID:2480960      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2480960.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册-第二章-二次函数习题北师大版.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册-第二章-二次函数习题北师大版.doc

1、九年级数学下册 第二章 二次函数习题北师大版九年级数学下册 第二章 二次函数习题北师大版年级:姓名:17二次函数一、选择题1在下列关系式中,y是x的二次函数的关系式是()A2xy+x2=1By2ax+2=0Cy+x22=0Dx2y2+4=02设等边三角形的边长为x(x0),面积为y,则y与x的函数关系式是()Ay=x2By=Cy=Dy=3已知抛物线y=x28x+c的顶点在x轴上,则c等于()A4B8C4D164若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c()A开口向上,对称轴是y轴B开口向下,对称轴是y轴C开口向下,对称轴平行于y轴D开口向上,对称轴平行于y轴5一次函数y=

2、ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()ABCD6已知抛物线y=x2+mx+n的顶点坐标是(1,3),则m和n的值分别是()A2,4B2,4C2,4D2,07对于函数y=x2+2x2,使得y随x的增大而增大的x的取值范围是()Ax1Bx0Cx0Dx18抛物线y=x2(m+2)x+3(m1)与x轴()A一定有两个交点B只有一个交点C有两个或一个交点D没有交点9二次函数y=2x2+mx5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A3B3C3或3D以上都不对10对于任何的实数t,抛物线y=x2+(2t)x+t总经过一个固定的点,这

3、个点是()A(1,0)B(1,0)C(1,3)D(1,3)二、填空题11抛物线y=2x+x2+7的开口向 _,对称轴是 _,顶点是 _12若二次函数y=mx23x+2mm2的图象经过原点,则m=_13如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_14对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是_15已知二次函数y=x26x+n的最小值为1,那么n的值是_16抛物线在y=x22x3在x轴上截得的线段长度是_17设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x(m)之间的函数关系式是_,自变量x的取值范围是_18设A、

4、B、C三点依次分别是抛物线y=x22x5与y轴的交点以及与x轴的两个交点,则ABC的面积是_19抛物线上有三点(2,3)、(2,8)、(1,3),此抛物线的解析式为_20已知一个二次函数与x轴相交于A、B,与y轴相交于C,使得ABC为直角三角形,这样的函数有许多,其中一个是_三、解答题21已知抛物线的顶点坐标为M(1,2),且经过点N(2,3),求此二次函数的解析式22把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移1个单位后,恰好与抛物线y=2x2+4x+1重合请求出a,b,c的值23二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A(1,0)和点

5、B(0,1)(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当AMC的面积为ABC面积的倍时,求a的值24对于抛物线y=x2+bx+c,给出以下陈述:它的对称轴为x=2; 它与x轴有两个交点为A、B;APB的面积不小于27(P为抛物线的顶点)求、得以同时成立时,常数b、c的取值范围25分别写出函数y=x2+ax+3(1x1)在常数a满足下列条件时的最小值:(l)0a;(2)a2.3(提示:可以利用图象哦,最小值可用含有a的代数式表示)26已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,(1)

6、如图甲:在OA上选取一点D,将COD沿CD翻折,使点O落在BC边上,记为E求折痕CD 所在直线的解析式;(2)如图乙:在OC上选取一点F,将AOF沿AF翻折,使点O落在BC边,记为G求折痕AF所在直线的解析式;再作GHAB交AF于点H,若抛物线过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K请你猜想:折痕IJ所在直线与第(2)题中的抛物线会有几个公共点;经过K作KLAB与IJ相交于L,则点L是否必定在抛物线上将以上两项猜想在(l)的情形下分别进行验证第22章 二次函数参考答案一、选

7、择题1在下列关系式中,y是x的二次函数的关系式是()A2xy+x2=1By2ax+2=0Cy+x22=0Dx2y2+4=0【解答】解:A、2xy+x2=1当x0时,可化为y=的形式,不符合一元二次方程的一般形式,故本选项错误;B、y2ax+2=0可化为y2=ax2不符合一元二次方程的一般形式,故本选项错误;C、y+x22=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确;D、x2y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误故选C2设等边三角形的边长为x(x0),面积为y,则y与x的函数关系式是()Ay=x2By=Cy=Dy=【解答】解:作出B

8、C边上的高ADABC是等边三角形,边长为x,CD=x,高为h=x,y=xh=x2故选:D3已知抛物线y=x28x+c的顶点在x轴上,则c等于()A4B8C4D16【解答】解:根据题意,得=0,解得c=16故选D4若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c()A开口向上,对称轴是y轴B开口向下,对称轴是y轴C开口向下,对称轴平行于y轴D开口向上,对称轴平行于y轴【解答】解:直线y=ax+b不经过二、四象限,a0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x=0故选A5一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()ABCD【解答

9、】解:A、由一次函数y=ax+b的图象可得:a0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;B、由一次函数y=ax+b的图象可得:a0,b0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=0,错误;C、由一次函数y=ax+b的图象可得:a0,b0,此时二次函数y=ax2+bx+c的图象应该开口向下,对称轴x=0,正确D、由一次函数y=ax+b的图象可得:a0,b0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;故选C6已知抛物线y=x2+mx+n的顶点坐标是(1,3),则m和n的值分别是()A2,4B2,4C2,4D2,0【解答】解:根据顶点坐标公式

10、,得横坐标为: =1,解得m=2;纵坐标为: =3,解得n=4故选B7对于函数y=x2+2x2,使得y随x的增大而增大的x的取值范围是()Ax1Bx0Cx0Dx1【解答】解:y=x2+2x2=(x1)21,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故只有选项C,D这两个范围符合要求,又因为C选项范围包括选项D的范围,故选:C8抛物线y=x2(m+2)x+3(m1)与x轴()A一定有两个交点B只有一个交点C有两个或一个交点D没有交点【解答】解:根据题意,得=b24ac=(m+2)2413(m1)=(m4)2(1)当m=4时,=0,即与x轴有一个交点;(2)当m4

11、时,0,即与x轴有两个交点;所以,原函数与x轴有一个交点或两个交点,故选C9二次函数y=2x2+mx5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A3B3C3或3D以上都不对【解答】解:二次函数y=2x2+mx5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,x12+x22=(x1+x2)22x1x2=2()=,解得:m=3,故选:C10对于任何的实数t,抛物线y=x2+(2t)x+t总经过一个固定的点,这个点是()A(1,0)B(1,0)C(1,3)D(1,3)【解答】解:把y=x2+(2t)x+t变形得到(1x)t=yx22x,

12、对于任何的实数t,抛物线y=x2+(2t)x+t总经过一个固定的点,1x=0且yx22x=0,x=1,y=3,即这个固定的点的坐标为(1,3)故选D二、填空题11抛物线y=2x+x2+7的开口向 上,对称轴是 x=1,顶点是 (1,6)【解答】解:y=x22x+7=(x1)2+6,二次项系数a=10,抛物线开口向上,顶点坐标为(1,6),对称轴为直线x=1故答案为:上,x=1,(1,6)12若二次函数y=mx23x+2mm2的图象经过原点,则m=2【解答】解:由于二次函数y=mx23x+2mm2的图象经过原点,代入(0,0)得:2mm2=0,解得:m=2,m=0;又m0,m=2故答案为:213

13、如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是y=2(x+1)2+3【解答】解:原抛物线的顶点为(0,1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(1,3);可设新抛物线的解析式为y=2(xh)2+k,代入得:y=2(x+1)2+314对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是【解答】解:当x=1时,y=ax2=a;当x=2时,y=ax2=4a,所以a4a=4,解得a=故答案为:15已知二次函数y=x26x+n的最小值为1,那么n的值是10【解答】解:原式可化为:y=(x3)29+n,函数的最小值是

14、1,9+n=1,n=10故答案为:1016抛物线在y=x22x3在x轴上截得的线段长度是4【解答】解:设抛物线与x轴的交点为:(x1,0),(x2,0),x1+x2=2,x1x2=3,|x1x2|=4,抛物线在y=x22x3在x轴上截得的线段长度是4故答案为:417设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x(m)之间的函数关系式是S=x2+3x,自变量x的取值范围是0x3【解答】解:由题意可得:S=x(3x)=x2+3x自变量x的取值范围是:0x3故答案为:S=x2+3x,0x318设A、B、C三点依次分别是抛物线y=x22x5与y轴的交点以及与x轴的两个交点,则ABC的面积是5【

15、解答】解:令x=0,则y=5,即A(0,5);设B(b,0),C(c,0)令y=0,则x22x5=0,则b+c=2,bc=5,则|bc|=2,则ABC的面积是5=5故答案为519抛物线上有三点(2,3)、(2,8)、(1,3),此抛物线的解析式为y=x2x+【解答】解:设此抛物线的解析式为y=ax2+bx+c,把点(2,3)、(2,8)、(1,3)代入得,解得所以此抛物线的解析式为y=x2x+,故答案为:y=x2x+20已知一个二次函数与x轴相交于A、B,与y轴相交于C,使得ABC为直角三角形,这样的函数有许多,其中一个是y=x2+3【解答】解:如图所示:当抛物线过点A(3,0),B(3,0)

16、,C(0,3),则设抛物线解析式为:y=ax2+3,故0=9a+3,解得:a=,即抛物线解析式为:y=x2+3故答案为:y=x2+3三、解答题21已知抛物线的顶点坐标为M(1,2),且经过点N(2,3),求此二次函数的解析式【解答】解:已知抛物线的顶点坐标为M(1,2),设此二次函数的解析式为y=a(x1)22,把点(2,3)代入解析式,得:a2=3,即a=5,此函数的解析式为y=5(x1)2222把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移1个单位后,恰好与抛物线y=2x2+4x+1重合请求出a,b,c的值【解答】解:将y=2x2+4x+1 整理得y=2x2+4x+1=2(x+

17、1)21因为抛物线y=ax2+bx+c 向左平移2个单位,再向下平移1个单位得y=2x2+4x+1=2(x+1)21,所以将y=2x2+4x+1=2(x+1)21向右平移2个单位,再向上平移1个单位即得y=ax2+bx+c,故y=ax2+bx+c=2(x+12)1+1=2(x1)=2x24x+2,所以a=2,b=4,c=223二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当AMC的面积为ABC面积的倍时,求a的值【解答】解:(1)由图象可知:

18、a0图象过点(0,1),所以c=1,图象过点(1,0),则a+b+1=0当x=1时,应有y0,则ab+10将a+b+1=0代入,可得a+(a+1)+10,解得a1所以,实数a的取值范围为1a0;(2)此时函数y=ax2(a+1)x+1,M点纵坐标为: =,图象与x轴交点坐标为:ax2(a+1)x+1=0,解得;x 1=1,x 2=,则AC=1=,要使SAMC=SABC=可求得a=24对于抛物线y=x2+bx+c,给出以下陈述:它的对称轴为x=2; 它与x轴有两个交点为A、B;APB的面积不小于27(P为抛物线的顶点)求、得以同时成立时,常数b、c的取值范围【解答】解:抛物线y=x2+bx+c=

19、(x+)2+,抛物线y=x2+bx+c的对称轴为x=2,=2,则b=4,P点的纵坐标是=c4,又它与x轴有两个交点为A、B,=b24ac=164c0,且AB=2解得 c4,又APB的面积不小于27,2|c16|27,即|c16|27由解得 c5综上所述,b的值是4,c的取值范围是c525分别写出函数y=x2+ax+3(1x1)在常数a满足下列条件时的最小值:(l)0a;(2)a2.3(提示:可以利用图象哦,最小值可用含有a的代数式表示)【解答】解:对称轴x=,(1)当0a时,即0,当x=时有最小值,最小值y=()2+a()+3=3,(2)当a2.3即1.1,在1x1范围内,y随x的增大而增大,

20、当x=1时,y最小,最小值y=(1)2+a(1)+3=4a26已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,(1)如图甲:在OA上选取一点D,将COD沿CD翻折,使点O落在BC边上,记为E求折痕CD 所在直线的解析式;(2)如图乙:在OC上选取一点F,将AOF沿AF翻折,使点O落在BC边,记为G求折痕AF所在直线的解析式;再作GHAB交AF于点H,若抛物线过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K请你猜想:折痕I

21、J所在直线与第(2)题中的抛物线会有几个公共点;经过K作KLAB与IJ相交于L,则点L是否必定在抛物线上将以上两项猜想在(l)的情形下分别进行验证【解答】解:(1)由折法知:四边形ODEC是正方形,OD=OC=6,D(6,0),C(0,6),设直线CD的解析式为y=kx+b,则,解得,直线CD的解析式为y=x+6(2)在直角ABG中,因AG=AO=10,故BG=8,CG=2,设OF=m,则FG=m,CF=6m,在直角CFG中,m2=(6m)2+22,解得m=,则F(0,),设直线AF为y=kx+,将A(10,0)代入,得k=,AF所在直线的解析式为:y=x+GHAB,且G(2,6),可设H(2

22、,yF),由于H在直线AF上,把H(2,yF)代入直线AF:yF=2+=,H(2,),又H在抛物线上, =22+h,解得h=3,抛物线的解析式为y=x2+3,将直线y=x+,代入到抛物线y=x2+3,得x2+x=0,=4()()=0,直线AF与抛物线只有一个公共点(3)可以猜想以下两个结论:折痕IJ所在直线与抛物线y=x2+3只有一个公共点;经过K作KLAB与IJ相交于L,则点L一定在抛物线y=x2+3上验证,在图甲的特殊情况中,I即为D,J即为C,G即为E,K也是E,KL即为ED,L就是D,将折痕CD:y=x+6代入y=x2+3中,得x2+x3=0,=14()(3)=0,折痕CD所在的直线与抛物线y=x2+3只有一个公共点验证,在图甲的特殊情况中,I就是C,J就是D,那么L就是D(6,0),当x=6时,y=62+3=0,点L在这条抛物线上

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服