ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:120.54KB ,
资源ID:2471397      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2471397.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(三角函数图像变换顺序详解.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三角函数图像变换顺序详解.doc

1、(完整版)三角函数图像变换顺序详解 图象变换的顺序寻根题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1。纵向平移 - m 变换 2。纵向伸缩 A 变换3。横向平移 - 变换 4.横向伸缩 变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量可不尽相同,解题的“风险性”也不一样。以下以y = sinx到y = Asin ()+m为例,讨论4种变换的顺序问题.【例1】 函数的图象可由y = sin x 的图象经过怎样的平移和伸缩变换而得到?【解法1】 第1步,横向平移:将y = sin x 向右平移

2、,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】 第1步,横向伸缩:将y = sin x 的横坐标缩短倍,得 y = sin 2x 第2步,横向平移:将y = sin 2x 向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】 解法1的“变换量(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大。【质疑】 对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变

3、,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反-如当0时对应右移(增方向),而m 0时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反- 如 1时对应着“缩”,而 A | 1时,对应着“扩”?【答疑】 对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等了。如将例1中的变成它们的变换“方向”就“统一”了。对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变?这是因为在“一次”替代:

4、x中,平移是对x进行的.故先平移(x)对后伸缩()没有影响; 但先收缩(x)对后平移()却存在着“平移”相关. 这就是为什么(在例1的解法2中)后平移时,有的原因.【说明】 为了使得4种变换量与4个参数(A,m)对应,降低“解题风险”,在由sinx变到Asin () ( 0) 的途中,采用如下顺序:(1)横向平移:x(2)横向伸缩:x+(3)纵向伸缩:sin () Asin ()(4)纵向平移:Asin () Asin () + m这正是例1中解法1的顺序.二、正向变换与逆向变换如果把由sin x 到Asin ()+m的变换称作正向变换,那么反过来,由Asin ()+m到sin x变换则称逆向

5、变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2) +1的图像下移1个单位得y=2sin (2x),再将纵坐标缩小一半得y= sin(2 x),再将横坐标扩大2倍得y= sin(x),最后将图象左移得函数y= sinx。【例2】 将y = f (x)cos x 的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x 。 试求f (x)的表达式.【分析】 这是图象变换的逆变换问

6、题:已知函数的变换结果,求“原函数”。 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.【解析】 将y = 2sin2 x 下移1个单位(与正向变换上移1个单位相反),得 y = 2sin2 x1,再将 2sin2x1左移(与正向变换右移相反)得 令 f (x)cos x = 2sin x cos x 得 f (x) = 2sin x【说明】由此得原函数为y=f(x)cosx=2 sin x cosx=sin2x. 正向变换为sin 2x2sin2x,其逆变换为2sin2xsin2x。 因为2sin2x=1+sin(2 x),所以下移1个单位得sin(2 x),左移得sin2x。三

7、、翻折变换 使 0平移变换x是“对x而言”,由于x过于简单而易被忽略。强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得。其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x - x对应着关于y轴的对称变换,即沿y轴的翻折变换;由f (x) - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换。【例3】 求函数的单调减区间. 【分析】 先变换 -3x3x,即沿y轴的翻折变换.【解析1】 ,转化为求g(x)=sin(3x)的增区间令 x (f(x)减区间主解)又函数的f(x)周期为,故函数f(x)减区间的通解为 x 【解析2】 的减区间为 即是 x 【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:(1)先求得f(x)减区间的主解 x (2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解。【思考】 本解先将“正数化”,使0是本解成功的关键。 否则,如果去解不等式组 将会使你陷入歧途,不防试试!

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服